首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calreticulin in the heart   总被引:1,自引:0,他引:1  
Calreticulin is a Ca2+ binding/storage chaperone resident protein of the endoplasmic reticulum. This protein plays a key role in the calreticulin/calnexin cycle and the quality control pathways in the endoplasmic reticulum. Calreticulin deficiency is lethal due to impaired cardiac development. However, over-expression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Ultrastructural evidence indicates that the deficiency associated with the absence of calreticulin in the heart may be due to a defect in the development of the contractile apparatus and/or a defect in development of the conductive system as well as a metabolic abnormality. Collectively, we postulate that calreticulin and endoplasmic reticulum plays an important role in cardiac development and postnatal pathologies. (Mol Cell Biochem 263: 137–142, 2004)  相似文献   

2.
Calreticulin in cardiac development and pathology   总被引:6,自引:0,他引:6  
Calreticulin is a Ca(2+) binding/storage chaperone resident in the lumen of endoplasmic reticulum (ER). The protein is an important component of the calreticulin/calnexin cycle and the quality control pathways in the ER. In mice, calreticulin deficiency is lethal due to impaired cardiac development. This is not surprising because the protein is expressed at high level at early stages of cardiac development. Overexpression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Recent studies on calreticulin-deficient and transgenic mice revealed that the protein is a key upstream regulator of calcineurin-dependent pathways during cardiac development. Calreticulin and ER may play important role in cardiac development and postnatal pathologies.  相似文献   

3.
4.
5.
6.
Szperl M  Opas M 《Postepy biochemii》2005,51(4):382-386
The endoplasmic reticulum (ER) plays a vital role in many cellular processes, including Ca2+ storage and release. Calreticulin is a Ca2+-binding chaperon residing in ER. The protein is a key component of the quality control pathways in ER. In the ER lumen, calreticulin performs two major functions, works as a chaperon and regulates Ca2+ homeostasis. In cardiac muscle, calreticulin plays an important role in cardiac development and pathology.  相似文献   

7.
Calreticulin is an endoplasmic reticulum Ca(2+) binding chaperone that has multiple functions inside and outside of the endoplasmic reticulum. It is involved in the quality control of newly synthesized proteins and glycoproteins, interacting with various other endoplasmic reticulum chaperones, specifically calnexin and ER protein of 57-kDa in the calreticulin/calnexin cycle. Calreticulin also plays a crucial role in regulating intracellular Ca(2+) homeostasis, associating calreticulin with a wide variety of signaling processes, such as cardiogenesis, adipocyte differentiation and cellular stress responses. The role of calreticulin outside of the endoplasmic reticulum is also extensive, including functions in wound healing and immunity. Therefore, calreticulin has important implications in health and disease. Signaling facts.  相似文献   

8.
Calreticulin is a Ca(2+)-binding molecular chaperone of the lumen of the endoplasmic reticulum. Calreticulin has been shown to be essential for cardiac and neural development in mice, but the mechanism by which it functions in cell differentiation is not fully understood. To examine the role of calreticulin in cardiac differentiation, the calreticulin gene was introduced into rat cardiomyoblast H9c2 cells, and the effect of calreticulin overexpression on cardiac differentiation was examined. Upon culture in a differentiation medium containing fetal calf serum (1%) and retinoic acid (10 nm), cells transfected with the calreticulin gene were highly susceptible to apoptosis compared with controls. In the gene-transfected cells, protein kinase B/Akt signaling was significantly suppressed during differentiation. Furthermore, protein phosphatase 2A, a Ser/Thr protein phosphatase, was significantly up-regulated, implying suppression of Akt signaling due to dephosphorylation of Akt by the up-regulated protein phosphatase 2A via regulation of Ca(2+) homeostasis. Thus, overexpression of calreticulin promotes differentiation-dependent apoptosis in H9c2 cells by suppressing the Akt signaling pathway. These findings indicate a novel mechanism by which cytoplasmic Akt signaling is modulated to cause apoptosis by a resident protein of the endoplasmic reticulum, calreticulin.  相似文献   

9.
Calreticulin is an endoplasmic reticulum resident Ca(2+)-binding chaperone. The importance of the protein is illustrated by embryonic lethality because of impaired cardiac development in calreticulin-deficient mice. The molecular details underlying this phenotype are not understood. In this study, we show that overexpression of activated calcineurin reverses the defect in cardiac development observed in calreticulin-deficient mice and rescues them from embryonic lethality. The surviving mice show no defect in cardiac development but exhibited growth retardation, hypoglycemia, increased levels of serum triacylglycerols, and cholesterol. Reversal of embryonic lethality because of calreticulin deficiency by activated calcineurin underscores the impact of the calreticulin-calcineurin functions on the Ca(2+)-dependent signaling cascade during early cardiac development. These findings show that calreticulin and calcineurin play fundamental roles in Ca(2+)-dependent pathways essential for normal cardiac development and explain the molecular basis for the rescue of calreticulin-deficient phenotype.  相似文献   

10.
Heart, brain, and body wall defects in mice lacking calreticulin   总被引:13,自引:0,他引:13  
Calreticulin is a ubiquitously expressed protein, which has been implicated in a large number of cellular functions, including calcium storage and signaling, protein folding, and cell attachment. To examine the role of calreticulin during in vivo development, mice deficient in calreticulin were generated by targeted inactivation of the calreticulin gene. Calreticulin-deficient mutants die in utero, mostly in late gestation. Half of these embryos had decreased cardiac cell mass, associated with increased apoptosis of cardiac myocytes. In vitro differentiation cultures of calreticulin-deficient embryonic stem cells resulted in fewer embryoid bodies with contractile activity than cultures derived from calreticulin +/- stem cells (P < 0.001). Sixteen percent of the mutants exhibited exencephaly secondary to a defect in neural tube closure. Embryos surviving until Embryonic Day 16.5 had omphalocele. Lack of calreticulin did not influence survival of embryonic fibroblasts under various endoplasmic reticulum stress conditions. However, calreticulin did influence cell migration in a calcium- and substrate-dependent manner. We conclude that calreticulin is not essential during the early stages of embryonic development, but is important for the development of heart and brain and for ventral body wall closure. The observed abnormalities are compatible with a role of calreticulin in the modulation of cellular calcium signaling.  相似文献   

11.

Background

Calreticulin, a Ca2+-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart.

Methodology/Principal Findings

We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca2+ signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca2+-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca2+-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin.

Conclusions/Significance

We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca2+ handling genes, gap junction components and left ventricle remodeling.  相似文献   

12.
In the present study we have demonstrated the presence of calreticulin, a major Ca(2+)-sequestering protein of nonmuscle cells, in a variety of cell types in tissue culture. The protein localizes to the endoplasmic reticulum in most cell types and also to the nuclear envelope or nucleoli-like structures in some cell types. Calreticulin is enriched in the rough endoplasmic reticulum, suggesting a possible involvement in protein synthesis. Calreticulin terminates with the KDEL-COOH sequence, which is likely responsible for its endoplasmic reticulum localization. Unlike some other KDEL proteins, calreticulin expression is neither heat-shock nor Ca(2+)-shock dependent. Using a variety of metabolic inhibitors, we have shown that the pool of calreticulin in L6 cells has a relatively slow turnover and a stable intracellular distribution. In proliferating muscle cells in culture (both L6 and human skeletal muscle) calreticulin is present in the endoplasmic reticulum, and additional intranuclear staining is observed. When fusion of the L6 cells is inhibited with either a high serum concentration or TGF-beta or TPA, the nucleolar staining by anticalreticulin antibodies is diminished, although the presence of calreticulin in the endoplasmic reticulum remains unchanged. In contrast, in differentiated (i.e., fused) muscle cells neither intranuclear nor intracellular staining for calreticulin is present. We conclude, therefore, that calreticulin is abundant in the endoplasmic reticulum in proliferating myoblasts, while it is present in only small amounts in sarcoplasmic reticulum membranes in terminally differentiated myotubes. We propose a model for the domain structure of calreticulin that may explain the differential subcellular distribution of this protein. Because of its widespread distribution in nonmuscle tissues, we postulate that calreticulin is a multifunctional protein that plays an important role in Ca(2+) sequestering and thus that it is the nonmuscle analog of calsequestrin.  相似文献   

13.
Summary Calreticulin was identified in a variety of rabbit tissues by Western blot analysis. Indirect immunofluorescence studies on cultured cells or frozen sections from the corresponding tissues revealed that the protein was distributed to the endoplasmic reticulum or sarcoplasmic reticulum. Calreticulin was found to be an abundant calcium-binding protein in non-muscle and smooth muscle cells and a constitutent calcium-binding protein in cardiac and skeletal muscle. From the immunoblot data, calreticulin may exist as an isoform in rabbit neural retina. The present study establishes the ubiquity of calreticulin in intracellular calcium binding.  相似文献   

14.
Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Calreticulin is a 46-kDa Ca2+-binding chaperone found across a diverse range of species. The protein is involved in the regulation of intracellular Ca2+ homeostasis and endoplasmic reticulum (ER) Ca2+ storage capacity. Calreticulin is also an important molecular chaperone involved in "quality control" within secretory pathways. The protein contains structurally and functionally unique domains with specialized functions. Studies on calreticulin knockout mice indicate that the protein is essential in early cardiac development. The protein also plays an important role in autoimmunity and cancer.  相似文献   

15.
Maize callus cells possess numerous protein bodies which develop as sub-compartments of the endoplasmic reticulum. We localized maize calreticulin mRNAs and protein in maize callus cells using in situ hybridization and immunocytochemistry. Calreticulin mRNAs were selectively targeted to the endoplasmic reticulum (ER) subdomains surrounding protein bodies. Profilin mRNAs, used as a positive control for in situ hybridization experiments, showed distinct and rather diffuse localization pattern. Using both, immunofluorescence and immunogold electron microscopy localization techniques, calreticulin was found to be enriched around and within protein bodies in maize callus storage cells. As a positive control for reticuloplasmins, HDEL antibody revealed labelling of protein bodies and of the nuclear envelope. The identity of protein bodies was confirmed by specific binding of an α zein antibody. These data suggest that calreticulin mRNA is targeted towards protein body forming subdomains of the ER, and that calreticulin is localized and enriched in these protein bodies. The possibility that calreticulin plays an important role in zein retention within the ER and/or its assembly and packaging into protein bodies during protein body biogenesis in maize callus is discussed.  相似文献   

16.
17.
钙网蛋白的生理及病理生理学作用   总被引:4,自引:0,他引:4  
Xu FF  Liu XH 《生理科学进展》2006,37(3):216-220
钙网蛋白(calreticulin,CRT)是内质网/肌浆网主要的Ca2^+结合蛋白,通过协助蛋白质正确折叠和维持细胞Ca^2+稳态而参与调节细胞凋亡、黏附、类固醇敏感性基因表达和自身免疫反应等,并与多种人类疾病的发生、发展和预后相关。本文综述钙网蛋白的生理功能及其在心肌肥大与衰竭、血管新生和应激等病理状态下的变化。  相似文献   

18.
Calreticulin, a Ca(2+) storage protein and chaperone in the endoplasmic reticulum, also modulates cell adhesiveness. Overexpression of calreticulin correlates with (i) increased cell adhesiveness, (ii) increased expression of N-cadherin and vinculin, and (iii) decreased protein phosphorylation on tyrosine. Among proteins that are dephosphorylated in cells that overexpress calreticulin is beta-catenin, a structural component of cadherin-dependent adhesion complexes, a member of the armadillo family of proteins and a part of the Wnt signaling pathway. We postulate that the changes in cell adhesiveness may be due to calreticulin-mediated effects on a signaling pathway from the endoplasmic reticulum, which impinges on the Wnt signaling pathway via the cadherin/catenin protein system and involves changes in the activity of protein-tyrosine kinases and/or phosphatases.  相似文献   

19.
The distribution of calsequestrin and calreticulin in smooth muscle and non-muscle tissues was investigated. Immunoblots of endoplasmic reticulum proteins probed with anti-calreticulin and anti-calsequestrin antibodies revealed that only calreticulin is present in the rat liver endoplasmic reticulum. Membrane fractions isolated from uterine smooth muscle, which are enriched in sarcoplasmic reticulum, contain a protein band which is immunoreactive with anti-calreticulin but not with anti-calsequestrin antibodies. The presence of calreticulin in these membrane fractions was further confirmed by 45Ca2+ overlay and "Stains-All" techniques. Calreticulin was also localized to smooth muscle sarcoplasmic reticulum by the indirect immunofluorescence staining of smooth muscle cells with anti-calreticulin antibodies. Furthermore, both liver and uterine smooth muscle were found to contain high levels of mRNA encoding calreticulin, whereas no mRNA encoding calsequestrin was detected. We have employed an ammonium sulfate precipitation followed by Mono Q fast protein liquid chromatography, as a method by which calsequestrin and calreticulin can be isolated from whole tissue homogenates, and by which they can be clearly resolved from one another, even where present in the same tissue. Calreticulin was isolated from rabbit and bovine liver, rabbit brain, rabbit and porcine uterus, and bovine pancreas and was identified by its amino-terminal amino acid sequence. Calsequestrin cannot be detected in preparations from whole liver tissue, and only very small amounts of calsequestrin are detectable in ammonium sulfate extracts of uterine smooth muscle. We conclude that calreticulin, and not calsequestrin, is a major Ca2+ binding protein in liver endoplasmic reticulum and in uterine smooth muscle sarcoplasmic reticulum. Calsequestrin and calreticulin may perform parallel functions in the lumen of the sarcoplasmic and endoplasmic reticulum.  相似文献   

20.
Summary In the present study we have investigated the presence and distribution of calreticulin in plant protoplasts. Calreticulin was purified from plant homogenates using a selective ammonium sulfate precipitation procedure developed for the purification of mammalian calreticulins and shown to bind calcium in45Ca2+ overlay assays. The protein was localized to plant cell endoplasmic reticulum by the indirect immunofluorescence staining of protoplasts with anti-calreticulin antibodies. No calreticulin was observed within large vacuoles. We conclude that calreticulin is present in the endoplasmic reticulum of plant cells, where, by analogy to the mammalian endoplasmic reticulum, it may play a major role in Ca2+ binding and storage.Abbreviations ER endoplasmic reticulum - SR sarcoplasmic reticulum - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PBS phosphate-buffered saline  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号