首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
D J Jacobson 《Génome》1992,35(2):347-353
The mating-type of Neurospora crassa (A and a) have a dual function: A and a individuals are required for sexual reproduction, but only strains of the same mating type will form a stable vegetative heterokaryon. Neurospora tetrasperma, in contrast, is a naturally occurring A+a heterokaryon. It was shown previously that the mating-type genes of both species are functionally the same and are not responsible for this difference in heterokaryon incompatibility. This suggests that a separate genetic system determines the heterokaryon incompatibility function of mating type. The mutant tolerant (tol) in N. crassa, unlinked to mating type, acts as a specific suppressor of A+a heterokaryon incompatibility. In the present study, the wild-type alleles at the tol locus were introgressed reciprocally, from N. crassa into N. tetrasperma and from N. tetrasperma into N. crassa, to investigate the action of these alleles in the A+a heterokaryon incompatibility systems of these species. The wild-type allele from N. tetrasperma (tolT) acts as a recessive suppressor of A+a heterokaryon incompatibility in N. crassa. Furthermore, the wild-type allele from N. crassa (tolC) causes A and a to become heterokaryon incompatible in N. tetrasperma, while having no effect on the sexual reproduction. Therefore, the tol gene plays a major role in determining the heterokaryon compatibility of mating type in these species: tolC is an active allele that causes incompatibility and tolT an inactive allele that suppresses incompatibility by its inactivity.  相似文献   

3.
4.
The homothallic Neurospora species, N. africana, contains sequences that hybridize to the A but not to a mating-type sequences of the heterothallic species N. crassa. In this study, the N. africana mating-type gene, mt A-1, was cloned, sequenced and its function analyzed in N. crassa. Although N. africana does not mate in a heterothallic manner, its mt A-1 gene functions as a mating activator in N. crassa. In addition, the N. africana mt A-1 gene confers mating type-associated vegetative incompatibility in N. crassa. DNA sequence analysis shows that the N. africana mt A-1 open reading frame (ORF) is 93% identical to that of N. crassa mt A-1. The mt A-1 ORF of N. africana contains no stop codons and was detected as a cDNA which is processed in a similar manner to mt A-1 of N. crassa. By DNA blot and orthogonal field agarose gel electrophoretic analysis, it is shown that the composition and location of the mating-type locus and the organization of the mating-type chromosome of N. africana are similar to that of N. crassa.  相似文献   

5.
In Neurospora crassa, strains of opposite mating type generally do not form stable heterokaryons because the mating type locus acts as a heterokaryon incompatibility locus. However, when one A and one a strain, having complementing auxotrophic mutants, are placed together on minimal medium, growth may occur, although the growth is generally slow. In this study, escape from such slow growth to that at a wild type or near-wild type rate was observed. The escape cultures are stable heterokaryons, mostly having lost the mating type allele function from one component nucleus, so that the nuclear types are heterokaryon compatible. Either A or a mating type can be lost. This loss of function has been attributed to deletion since only one nuclear type could be recovered in all heterokaryons except one, but deletion spanning adjacent loci has been directly demonstrated in a minority of cases. Alternatively when one component strain is tol and the other tol+ (tol being a recessive mutant suppressing the heterokaryon incompatibility associated with mating type), escape may occur by the deletion or mutation of tol+, also resulting in heterokaryon compatibility. An induction mechanism for escape is speculated upon.  相似文献   

6.
A heterokaryon is a tissue type composed of cells containing genetically different nuclei. Although heterokaryosis is commonly found in nature, an understanding of the evolutionary implications of this phenomenon is largely lacking. Here, we use the filamentous ascomycete Neurospora tetrasperma to study the interplay between nuclei in heterokaryons across vegetative and sexual developmental stages. This fungus harbours nuclei of two opposite mating types (mat A and mat a) in the same cell and is thereby self-fertile. We used pyrosequencing of mat-linked SNPs of three heterokaryons to demonstrate that the nuclear ratio is consistently biased for mat A-nuclei during mycelial growth (mean mat A/mat a ratio 87%), but evens out during sexual development (ratio ranging from 40 to 57%). Furthermore, we investigated the association between nuclear ratio and expression of alleles of mat-linked genes and found that expression is coregulated to obtain a tissue-specific bias in expression ratio: during mycelial extension, we found a strong bias in expression for mat A-linked genes, that was independent of nuclear ratio, whereas at the sexual stage we found an expression bias for genes of the mat a nuclei. Taken together, our data indicate that nuclei cooperate to optimize the fitness of the heterokaryon, via both altering their nuclear ratios and coregulation genes expressed in the different nuclei.  相似文献   

7.
Aspergillus heterothallicus K., F. and R., isolated from Costa Rican soils, represents the first species in this genus that is truly heterothallic. Each of the eleven strains investigated is functionally hermaphroditic but self-sterile and falls into one of two cross-mating classes, A or a. The mating-type factors A and a appear to be an allelic pair segregating independently of the locus for pigmentation of mycelium which varies from yellow to pinkish orange in different isolates. The striking variation in the development of hülle cell masses that occurred among the progeny from the cross WB 5096(A) × WB 5097(a) was found to be genetically controlled. The gene responsible for a delay in the formation and maturation of cleistothecia appeared to be loosely linked to the a mating-type locus and could be recombined into the A mating type. The mechanism of fertilization has not been completely elucidated. Coiled ascogonia were found within young hülle cell masses developed in cultures where two isolates of opposite mating types were crossed; such coils have not been observed, thus far, within hülle cell masses in unmated cultures. Although no recognizable male structure has been found, the fertilizing element appears to be mycelial in form rather than conidial. Interspecific mating did not occur when strains of Aspergillus heterothallicus were paired with other members of the A. nidulans group.  相似文献   

8.
Mutants that are resistant to α-factor have been isolated from a mating-type haploid strains of yeast by direct selection on agar medium containing partially purified α-factor. All resistant mutants isolated were found to be sterile. They were characterized and compared with mutants previously isolated as nonmating. Among 93 able to mate at low frequency and to sporulate, none showed linkage to the mating-type locus. The results support the hypothesis that the response to α-factor by cells of mating-type a is essential for mating.  相似文献   

9.
10.
In Saccharomyces cerevisiae, meiosis and spore formation as well as mating are controlled by mating-type genes. Diploids heterozygous for mating type (aα) can sporulate but cannot mate; homozygous aa and αα diploids can mate, but cannot sporulate. From an αα diploid parental strain, we have isolated mutants which have gained the ability to sporulate. Those mutants which continue to mate as αα cells have been designated CSP (control of sporulation). Upon sporulation, CSP mutants yield asci containing 4α spores. The mutant gene which allows αα cells to sporulate is unlinked to the mating-type locus and also acts to permit sporulation in aa diploid cells. Segregation data from crosses between mutant αα and wild-type aa diploids and vice versa indicate (for all but one mutant) that the mutation which allows constitutive sporulation (CSP) is dominant over the wild-type allele. Some of the CSP mutants are temperature-sensitive, sporulating at 32°, but not at 23°. In addition to CSP mutants, our mutagenesis and screening procedure led to the isolation of mutants which sporulate by virtue of a change in the mating-type locus itself, resulting in loss of ability to mate.  相似文献   

11.
The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of and subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the sublocus, but unlike the multiallelic sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.  相似文献   

12.
13.
The homothallic Neurospora species, N. africana, contains sequences that hybridize to the A but not to a mating-type sequences of the heterothallic species N. crassa. In this study, the N. africana mating-type gene, mt A-1, was cloned, sequenced and its function analyzed in N. crassa. Although N. africana does not mate in a heterothallic manner, its mt A-1 gene functions as a mating activator in N. crassa. In addition, the N. africana mt A-1 gene confers mating type-associated vegetative incompatibility in N. crassa. DNA sequence analysis shows that the N. africana mt A-1 open reading frame (ORF) is 93% identical to that of N. crassa mt A-1. The mt A-1 ORF of N. africana contains no stop codons and was detected as a cDNA which is processed in a similar manner to mt A-1 of N. crassa. By DNA blot and orthogonal field agarose gel electrophoretic analysis, it is shown that the composition and location of the mating-type locus and the organization of the mating-type chromosome of N. africana are similar to that of N. crassa.  相似文献   

14.
The sexual development and virulence of the fungal pathogen Cryptococcus neoformans is controlled by a bipolar mating system determined by a single locus that exists in two alleles, α and a. The α and a mating-type alleles from two divergent varieties were cloned and sequenced. The C. neoformans mating-type locus is unique, spans >100 kb, and contains more than 20 genes. MAT-encoded products include homologs of regulators of sexual development in other fungi, pheromone and pheromone receptors, divergent components of a MAP kinase cascade, and other proteins with no obvious function in mating. The α and a alleles of the mating-type locus have extensively rearranged during evolution and strain divergence but are stable during genetic crosses and in the population. The C. neoformans mating-type locus is strikingly different from the other known fungal mating-type loci, sharing features with the self-incompatibility systems and sex chromosomes of algae, plants, and animals. Our study establishes a new paradigm for mating-type loci in fungi with implications for the evolution of cell identity and self/nonself recognition.  相似文献   

15.
16.
A barrage is a line or zone of demarcation that may develop at the interface where genetically different fungi meet. Barrage formation represents a type of nonself recognition that has often been attributed to the heterokaryon incompatibility system, which limits the co-occurrence of genetically different nuclei in the same cytoplasm during the asexual phase of the life cycle. While the genetic basis of the heterokaryon incompatibility system is well characterized in Neurospora crassa, barrage formation has not been thoroughly investigated. In addition to the previously described Standard Mating Reaction barrage, we identified at least three types of barrage in N. crassa; dark line, clear zone, and raised aggregate of hyphae. Barrage formation in N. crassa was evident only when paired mycelia were genetically different and only when confrontations were carried out on low nutrient growth media. Barrages were observed to occur in some cases between strains that were identical at all major heterokaryon incompatibility (het) loci and the mating-type locus, mat, which acts as a heterokaryon incompatibility locus during the vegetative phase of N. crassa. We also found examples where barrages did not form between strains that had genetic differences at het-6, het-c, and/or mat. Taken together, these results suggest that the genetic control of barrage formation in N. crassa can operate independently from that of heterokaryon incompatibility and mating type. Surprisingly, barrages were not observed to form when wild-collected strains of N. crassa were paired. However, an increase in the frequency of pairings that produced barrages was observed among strains obtained by back-crossing wild strains to laboratory strains, or through successive rounds of inbreeding of wild-derived strains, suggesting the presence in wild strains of genes that suppress barrage.  相似文献   

17.
N. L. Glass  L. Lee 《Genetics》1992,132(1):125-133
In the filamentous fungus, Neurospora crassa, mating type is regulated by a single locus with alternate alleles, termed A and a. The mating type alleles control entry into the sexual cycle, but during vegetative growth they function to elicit heterokaryon incompatibility, such that fusion of A and a hypha results in death of cells along the fusion point. Previous studies have shown that the A allele consists of 5301 bp and has no similarity to the a allele; it is found as a single copy and only within the A genome. The a allele is 3235 bp in length and it, too, is found as a single copy within the a genome. Within the A sequence, a single open reading frame (ORF) of 288 amino acids (mt A-1) is thought to confer fertility and heterokaryon incompatibility. In this study, we have used repeat induced point (RIP) mutation to identify functional regions of the A idiomorph. RIP mutations in mt A-1 resulted in the isolation of sterile, heterokaryon-compatible mutants, while RIP mutations generated in a region outside of mt A-1 resulted in the isolation of mutants capable of mating, but deficient in ascospore formation.  相似文献   

18.
Allelic differences at any one of at least 11 heterokaryon incompatibility (het) loci in Neurospora crassa trigger an incompatibility response: localized cell death at sites of hyphal anastomosis. We have isolated spontaneous and insertional suppressor mutants that are heterokaryon-compatible in spite of allelic differences at one or at several het loci. Some intra- and extragenic mutants tolerated allelic differences only at single het loci. Multi-tolerant spontaneous mutants were isolated by selecting simultaneously for tolerance of differences at het-c, -d and -e, or at each of these plus mating-type. Some suppressor mutants were specific for only one allele at the affected het locus; others suppressed both alleles. Insertional mutations were isolated from banks of transformants, each having a plasmid integrated into a random position in the chromosome. One mutant tolerated allelic differences at het-d. A homologous cosmid from a Neurospora genomic bank complemented the mutant phenotype. A second insertional inactivation mutant was tolerant of het-c differences. Inactivation of the wild-type locus corresponding to the integration site was accomplished by repeat-induced point mutation (RIP). The RIP progeny, like the original mutant, were tolerant of differences at het-c. It may be possible to use such suppressor mutants as universal donors of hypovirulence in pathogenic fungi.  相似文献   

19.
Selfing in the chestnut blight fungus, Cryphonectria parasitica, occurs by two different genetic mechanisms. Most self-fertile isolates of C. parasitica are heterokaryotic for mating type, and the progeny from selfing segregate for mating type. Further, we resolved mating-type (MAT) heterokaryons into homokaryons of both mating types by isolating uninucleate asexual spores (conidia). However, because ascospore progeny, with rare exceptions, are not MAT heterokaryons, C. parasitica must lack a regular mechanism to maintain heterokaryosis by selfing. We hypothesize that heterokaryon formation may occur either because of recurrent biparental inbreeding, or by mating-type switching, possibly one involving some kind of parasexual process. The second mechanism found for selfing in C. parasitica occurred less frequently. Three single-conidial isolates (MAT-1 and MAT-2) selfed and produced progeny that did not segregate for mating type. It is currently not known if meiosis occurs during ascospore formation by this mechanism.  相似文献   

20.

Background

Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs.

Methodology/Principal Findings

We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters.

Conclusions/Significance

In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号