首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of [(4-bromo)Phe4,Met5]enkephalin (Tyr-Gly-Gly-(4-bromo)-Phe-Met) shows two independent molecular conformations. The molecules are arranged in parallel in a head-to-tail fashion and form an antiparallel beta-sheet structure involving intermolecular hydrogen bonds. This dimeric beta-structure is also observed in the [Met5]enkephalin crystal, in spite of their different crystal packing environments, which shows the energetic stability of this molecular conformation. The three-dimensional similarity between the dimeric beta-structure and the beta-turn form is discussed in the relation to the opioid delta and mu receptors.  相似文献   

2.
Molecular dynamics at 300 K was used as a conformation searching tool to analyze a knowledge-based structure prediction of an anti-insulin antibody. Solvation effects were modeled by packing water molecules around the antigen binding loops. Some loops underwent backbone and side-chain conformational changes during the 95-ps equilibration, and most of these new, lower potential energy conformations were stable during the subsequent 200-ps simulation. Alterations to the model include changes in the intraloop, main-chain hydrogen bonding network of loop H3, and adjustments of Tyr and Lys side chains of H3 induced by hydrogen bonding to water molecules. The structures observed during molecular dynamics support the conclusion of the previous paper that hydrogen bonding will play the dominant role in antibody-insulin recognition. Determination of the structure of the antibody by x-ray crystallography is currently being pursued to provide an experimental test of these results. The simulation appears to improve the model, but longer simulations at higher temperatures should be performed.  相似文献   

3.
Environmental effects on trimethoprim (TMP), an inhibitor of bacterial dihydrofolate reductase (DHFR), were investigated with energy minimizations in vacuo, in the crystal, and in aqueous solution. The conformations, harmonic dynamics, and energetics of the antibacterial drug calculated in these environments were compared with each other and with those of two enzyme-bound drugs. Valence and torsion angles and their energies and overall intra- and intermolecular energies compensated one another in the minimized TMP structures. The conformations of the isolated and aqueous molecules were similar to that of TMP bound to chicken liver DHFR, while the structures from the TMP crystal and from the Escherichia coli DHFR complex were unique. Since neither the small-molecule crystal nor a local minimum of the isolated molecule gave the conformation of TMP bound to the bacterial enzyme, a combination of several experimental and theoretical techniques may be necessary to probe accessible conformations of a molecule.  相似文献   

4.
The structures of five basic pancreatic trypsin inhibitor (BPTI) molecules are compared to establish the extent and nature of the conformational variability resulting from crystal packing effects. BPTI is an ideal system to evaluate such factors because of the availability of high resolution X-ray models of five different BPTI structures, each in a different crystal packing environment. Differences observed among the structures are found to be distributed throughout the molecule, although the regions that display most variability are associated with the loop structures (residues 14-17 and 24-29). The regions of structure that show the largest rms deviations from the mean of the five packing motifs correlate well with the presence of intermolecular contacts in the crystal lattice. For most of the molecules there is also a correspondence between a larger number of intermolecular contacts and systematically higher B-factors, although it is not apparent whether this is induced by the crystal contact or results from the fact that the contacts are made predominantly through surface loops. The conformational differences seen among the X-ray models constitute more than local shifts at the lattice contact surfaces, and in fact involve in some cases the making and breaking of intramolecular H-bonds. The magnitudes of the differences among packing models are significantly larger than those usually associated with changes induced by mutagenesis; for instance; the structural differences at the site of mutation observed on removing an internal disulfide from the molecule are significantly less than those associated with lattice contact effects. The crystal packing conformations are compared to representative structures of BPTI generated during a 96-psec molecular dynamics (MD) simulation. This comparison shows a high level of correspondence between the protein flexibility indicated by the X-ray and MD analyses, and specifically between those regions that are most variable. This suggests that the regions that show most variability among the crystal packing models are not artifacts of crystallization, but rather represent true low-energy conformers that have been preferentially selected by crystallization factors.  相似文献   

5.
The X-ray crystal structures of three monosaccharide derivatives prepared by the reaction of sulfanilamide with D-ribose, D-arabinose, and D-mannose have been determined. The derivatives are N-(p-sulfamoylphenyl)-alpha-D-ribopyranosylamine (1), N-(p-sulfamoylphenyl)-alpha-D-arabinopyranosylamine (2), and N-(p-sulfamoylphenyl)-beta-D-mannopyranosylamine monohydrate (3). The monosaccharide ring of 1 and 2 has the 1C4 conformation, stabilized in 1 by an intramolecular hydrogen bond from 0-2 to 0-4. Compound 3 has the 4C1 conformation at the monosaccharide ring and the gt conformation at the C-6-O-6 side chain. Occupancy of the water molecule in the crystal of 3 actually examined was 22%. The degree of interaction between sulfamoyl groups and monosaccharide moieties varies from structure to structure. The packing arrangement of 2 involves hydrogen bonding between sulfamoyl groups and monosaccharide hydroxyl groups, but interactions of this type are fewer in 1, and in 3 the hydrogen bonds are either strictly between monosaccharide hydroxyl groups or strictly between sulfamoyl groups. Pairs of hydrogen bonds (two-point contacts) link neighboring molecules in all three structures, between screw-axially related molecules in 1 and 2 and between translationally related molecules in 3. The contact in 3 defined by the O-3-H...O-5 and O-6-H...O-4 hydrogen bonds is found in several other N-aryl-beta-D-mannopyranosylamine crystal structures and is apparently an especially favorable mode of intermolecular interaction in these compounds.  相似文献   

6.
D H Kitson  A T Hagler 《Biochemistry》1988,27(14):5246-5257
Energy minimizations and molecular dynamics simulations have been performed on the cyclic peptide cyclo-(Ala-Pro-D-Phe)2 in both the isolated and crystal states. The results of these calculations have been analyzed, both to investigate our ability to reproduce experimental data (structure and vibrational and NMR spectra) and to investigate the effects of environment on the energy, structure, and dynamics of peptides. Comparison of the minimized and time-averaged crystal systems with the experimental peptide structure shows that the calculations have closely reproduced the experimental structure. Molecular dynamics of the isolated molecule has led to a new conformation, which is approximately equal to 8.5 kcal/mol more stable than the conformation that exists in the crystal, the latter conformation being stabilized by intermolecular (packing) forces. This illustrates the considerable effect that environment can have on the conformation of peptides. The crystal environment has also been shown to significantly reduce the dynamic conformational fluctuations seen for the isolated molecule. The behavior of the peptide during the isolated simulation also supports the experimental NMR observation of a symmetric structure that differs from the asymmetric, instantaneous structures which characterize the molecule during the dynamics. Calculations of vibrational frequencies of the peptide in the crystal and isolated states show the expected shifts in bond-stretching frequencies due to intermolecular interactions. Finally, we have calculated NMR coupling constants from the dynamics simulation of the isolated peptide and have compared these with the experimental values. This has led to a possible reinterpretation of the experimental data.  相似文献   

7.
The mechanisms of the three-dimensional crambin structure alterations in the crystalline environments and in the trajectories of the molecular dynamics simulations in the vacuum and crystal surroundings have been analyzed. In the crystalline state and in the solution the partial regrouping of remote intramolecular packing contacts, involved in the formation and stabilization of the tertiary structure of the crambin molecule, occurs in NMR structures. In the crystalline state it is initiated by the formation of the intermolecular contacts, the conformational influence of its appearance is distributed over the structure. The changes of the conformations and positions of the residues of the loop segments, where the intermolecular contacts of the crystal surroundings are preferably concentrated, are most observable. Under the influence of these contacts the principal change of the regular secondary structure of crambin is taking place: extension of the two-strand β structure to the three-strand structure with the participation of the single last residue N46 of the C-terminal loop. In comparison with the C-terminal loop the more profound changes are observed in the conformation and the atomic positions of the backbone atoms and in the solvent accessibility of the residues of the interhelical loop. In the solution of the ensemble of the 8 NMR structures relative accessibility to the solvent differs more noticeably also in the region of the loop segments and rather markedly in the interhelical loop. In the crambin cryogenic crystal structures the positions of the atoms of the backbone and/or side chain of 14–18 of 46 residues are discretely disordered. The disorganizations of at least 8 of 14 residues occur directly in the regions of the intermolecular contacts and another 5 residues are disordered indirectly through the intramolecular contacts with the residues of the intermolecular contacts. Upon the molecular dynamics simulation in the vacuum surrounding as in the solution of the crystalline structure of crambin the essential changes of the backbone conformation are caused by the intermolecular contacts absence, but partly masked by the structure changes owing to the nonpolar H atoms absence on the simulated structure. The intermolecular contact absence is partly manifested upon the molecular dynamics simulation of the crambin crystal with one protein molecule. Compared to the crystal structure the lengths of the interpeptide hydrogen bonds and other interresidue contacts in an average solution NMR structure are somewhat shorter and accordingly the energy of the interpeptide hydrogen bonds is better. This length shortening can occur at the stage of the refinement of the NMR structures of the crambin and other proteins by its energy minimizations in the vacuum surroundings and not exist in the solution protein structures.  相似文献   

8.
The crystal structure of the triple-helical peptide, (Pro-Hyp-Gly)(4)-Glu-Lys-Gly-(Pro-Hyp-Gly)(5) has been determined to 1.75 A resolution. This peptide was designed to examine the effect of a pair of adjacent, oppositely charged residues on collagen triple-helical conformation and intermolecular interactions. The molecular conformation (a 7(5) triple helix) and hydrogen bonding schemes are similar to those previously reported for collagen triple helices and provides a second instance of water mediated N--H . . . O==C interchain hydrogen bonds for the amide group of the residue following Gly. Although stereochemically capable of forming intramolecular or intermolecular ion pairs, the lysine and glutamic acid side-chains instead display direct interactions with carbonyl groups and hydroxyproline hydroxyl groups or interactions mediated by water molecules. Solution studies on the EKG peptide indicate stabilization at neutral pH values, where both Glu and Lys are ionized, but suggest that this occurs because of the effects of ionization on the individual residues, rather than ion pair formation. The EKG structure suggests a molecular mechanism for such stabilization through indirect hydrogen bonding. The molecular packing in the crystal includes an axial stagger between molecules, reminiscent of that observed in D-periodic collagen fibrils. The presence of a Glu-Lys-Gly triplet in the middle of the sequence appears to mediate this staggered molecular packing through its indirect water-mediated interactions with backbone C==O groups and side chains.  相似文献   

9.
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site‐directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson‐Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. Proteins 2014; 82:1128–1141. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
11.
Molecular structure of cyclic deoxydiadenylic acid at atomic resolution   总被引:7,自引:0,他引:7  
The molecular structure of a small cyclic nucleotide, cyclic deoxydiadenylic acid, has been determined by single-crystal X-ray diffraction analysis and refined to an R factor of 7.8% at 1.0-A resolution. The crystals are in the monoclinic space group C2 with unit cell dimensions of a = 24.511 (3) A, b = 24.785 (3) A, c = 13.743 (3) A, and beta = 94.02 (2) degrees. The structure was solved by the direct methods program SHELXS-86. There are 2 independent cyclic d(ApAp) molecules, 2 hydrated magnesium ions, and 26 water molecules in the asymmetric unit of the unit cell. The two cyclic d(ApAp) molecules have similar conformations within their 12-membered sugar-phosphate backbone ring, but they have quite different appearances due to the different glycosyl torsion angles that make one molecule more compact and the other extended and open. Three of the four deoxyribose rings are in the less common C3'-endo conformation. All four phosphate groups have their phosphodiester torsion angles alpha/zeta in the gauche(+)/gauche(+) conformation. One of the cyclic d(ApAp) molecules associates with another symmetry-related molecule to form a self-intercalated dimer that is a stable structure in solution, as observed in NMR studies. Many interesting intermolecular interactions, including base-base stacking, ribose-base stacking, base pairing, base-phosphate hydrogen bonding, and metal ion-phosphate interactions, are found in the crystal lattice. This structure may be relevant for understanding the conformational potentiality of an endogenous biological regulator of cellulose synthesis, cyclic (GpGp).  相似文献   

12.
Recalcitrant crystallization and syrup formation are frequent features of natural sugars. This is the case of d ‐ribose, yielding low‐quality crystals of mixed α‐ and β‐pyranose anomers. However, large crystals of dl ‐ribose can be grown easily. The crystal structures of stable d ‐ribose forms I and II as well as dl ‐form II have been analyzed in terms of their compatibility with the molecular aggregation. The comparison of the potential energy of all conformers and their OH···O hydrogen‐bonding patterns is consistent with the preferential racemate crystallization in terms of departures from the optimized isolated ribose molecule and its directional interactions. This analysis is aimed at rationalizing the interplay between the molecular structure and spontaneous crystallization of chiral compounds. Chirality 26: 806–810, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The intermolecular aggregation between the solvent and organic molecules is covered in the current article. 4,4′-(Buta-1,3-diyne-1,4-diyl)dibenzoic acid (DADBA) was used as an organic molecule and dimethyl sulfoxide (DMSO) as a solvent to create the target compound DADBA-DMSO. The material's hydrogen bonding and intermolecular aggregation were determined by appropriate characterization methods, including single-crystal X-ray diffraction (XRD), Fourier-transform infrared (FTIR), photoluminescence (PL), and cyclic voltammetry (CV) analysis. Each hydrogen of the carboxylic group is coordinated by oxygen from the DMSO molecule in the stiff planar layer packing that makes up the DADBA-DMSO crystal structure.  相似文献   

14.
A QM/MM analysis of the conformations of crystalline sucrose moieties   总被引:2,自引:0,他引:2  
Both ab initio quantum mechanics (QM) and molecular mechanics (MM) were used to produce a hybrid energy surface for sucrose that simultaneously provides low energies for conformations that are observed in crystal structures and high energies for most unobserved structures. HF/6-31G* QM energies were calculated for an analogue based on tetrahydropyran (THP) and tetrahydrofuran (THF). Remaining contributions to the potential energy of sucrose were calculated with MM. To do this, the MM surface for the analogue was subtracted from the MM surface for the disaccharide, and the QM surface for the analogue was added. Prediction of the distribution of observable geometries was enhanced by reducing the strength of the hydrogen bonding. Reduced hydrogen-bonding strength is probably useful because many crystalline sucrose moieties do not have intramolecular hydrogen bonds between the fructose and glucose residues. Therefore, hydrogen bonding does not play a large role in determining the molecular conformation. On the hybrid energy surface that was constructed with a dielectric constant of 3.5, the average potential energy of 23 sucrose moieties from crystal structures is 1.16 kcal/mol, and the population of observed structures drops off exponentially as the energy increases.  相似文献   

15.
I L Karle 《Biopolymers》1989,28(1):1-14
Preferred conformation and types of molecular folding are some of the topics that can be addressed by structure analysis using x-ray diffraction of single crystals. The conformations of small linear peptide molecules with 2-6 residues are affected by polarity of solvent, presence of water molecules, hydrogen bonding with neighboring molecules, and other packing forces. Larger peptides, both cyclic and linear, have many intramolecular hydrogen bonds, the effect of which outweighs any intermolecular attractions. Numerous polymorphs of decapeptides grown from a variety of solvents, with different cocrystallized solvents, show a constant conformation for each peptide. Large conformational changes occur, however, upon complexation with metal ions. A new form of free valinomycin grown from DMSO exhibits near three-fold symmetry with only three intramolecular hydrogen bonds. The peptide is in the form of a shallow bowl with a hydrophobic exterior. Near the bottom of the interior of the bowl are three carbonyl oxygens, spaced and directed so that they are in position to form three ligands to a K+, e.g., complexation can be completed by the three lobes containing the beta-bends closing over and encapsulating the K+ ion. In another example, free antamanide and the biologically inactive perhydro analogue, in which four phenyl groups become cyclic hexyl groups, have essentially the same folding of backbone and side chains. The conformation changes drastically upon complexation with Li+ or Na+. However, the metal ion complex of natural antamanide has a hydrophobic globlar form whereas the metal ion complex of the inactive perhydro analogue has a polar band around the middle. The structure results indicate that the antamanide molecule is in a complexed form during its biological activity. Single crystal x-ray diffraction structure analyses have identified the manner in which water molecules are essential to creating minipolar areas on apolar helices. Completely apolar peptides, such as membrane-active peptides, can acquire amphiphilic character by insertion of a water molecule into the helical backbone of Boc-Aib-Ala-Leu-Aib-Ala-Leu-Aib-Ala-Leu-Aib-OMe, for example. The C-terminal half assumes an alpha-helix conformation, whereas the N-terminal half is distorted by an insertion of a water molecule W(1) between N(Ala5) and O(Ala2), forming hydrogen bonds N(5)H...W(1) and W(1)...O(2). The distortion of the helix exposes C = O(Aib1) and C = O(Aib4) to the outside environment with the consequence of attracting additional water molecules. The leucyl side chains are on the other side of the molecule. Thus a helix with an apolar sequence can mimic an amphiphilic helix.  相似文献   

16.
The effect of crystal packing on the electronic structure of organic molecules was modeled by incorporation of the external electrostatic potential into the semiempirical Hamiltonian of the molecule. An empirical correction procedure was devised in order to compensate for systematic errors in the charge distribution typical of semiempirical methods. The model was applied to 79 crystal structures belonging to various syngonies and space groups. The effect of the crystal field is subject to wide variations depending on the crystal packing motif. The difference between the effect of the crystal field on the molecular electronic structure and the solvent effect modeled with COSMO is highlighted. The effect of intermolecular hydrogen bonds on the molecular electronic structure and electronic spectra was modeled with this approach, and it does not predominate over the effect of long-range electrostatic interactions. INDO/S calculations employing the crystal electrostatic potential give an insight into the origin of crystallochromy, in particular, they properly predict color difference for several groups of polymorphs. Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

17.
Conformational energy calculations were carried out on the hypothalamic hormone melanostatin, a tripeptide with the primary structure H-L-Pro-L-Leu-Gly-NH2. The calculated lowest energy conformation was a type II beta bend, very similar to that reported in an X-ray crystal study. This conformation, however, was only one of 109 low-energy structures (less than or equal to 3 kcal/mol above the global minimum), indicating that the molecule in solution exists as an ensemble of conformations and is very flexible, in agreement with relaxation data from n.m.r. measurements. A statistical analysis yielded an average end-to-end distance of 6.8 A and a bend probability of 0.62, suggesting that, in nonpolar solvents, bend structures predominate within the statistical ensemble. The statistical analysis, however, also yielded a probability of only 0.11 for the occurrence of a 4 leads to 1 hydrogen bond. Hence, the calculations show that, although bend conformations predominate, bends would be difficult to observe in solution if the experiments were designed only to detect 4 leads to 1 hydrogen bonds.  相似文献   

18.
We investigated structural reorganization of two different kinds of molecular sheets derived from the cellulose II crystal using molecular dynamics (MD) simulations, in order to identify the initial structure of the cellulose crystal in the course of its regeneration process from solution. After a one-nanosecond simulation, the molecular sheet formed by van der Waals forces along the () crystal plane did not change its structure in an aqueous environment, while the other one formed by hydrogen bonds along the (1 1 0) crystal plane changed into a van der Waals-associated molecular sheet, such as the former. The two structures that were calculated showed substantial similarities such as the high occupancy of intramolecular hydrogen bonds between O3H and O5 of over 0.75, few intermolecular hydrogen bonds, and the high occurrence of hydrogen bonding with water. The convergence of the two structures into one denotes that the van der Waals-associated molecular sheet can be the initial structure of the cellulose crystal formed in solution. The main chain conformations were almost the same as those in the cellulose II crystal except for a −16° shift of φ (dihedral angle of O5-C1-O1-C4) and the gauche-gauche conformation of the hydroxymethyl side group appears probably due to its hydrogen bonding with water. These results suggest that the van der Waals-associated molecular sheet becomes stable in an aqueous environment with its hydrophobic inside and hydrophilic periphery. Contrary to this, a benzene environment preferred a hydrogen-bonded molecular sheet, which is expected to be the initial structure formed in benzene.  相似文献   

19.
T4溶菌酶晶体分子堆积的研究   总被引:1,自引:1,他引:0  
以不对称单位中只有一个分子的10种不同晶型的T4溶菌酶晶体为材料,对晶体中的分子堆积进行了研究,结果表明,在溶剂含量较高的晶型中,非极性基团在接触面积中所占的比例略高于溶剂含量较低的晶型,而其极性和带电荷基团在接触面积中所占的比例略低于溶剂含量较低的晶型。溶剂含量较高的晶型多含有晶体学二重轴,二重轴相关的分子间的接触与其他接触相比,含有较少的极性相互作用。这些结果说明溶剂含量的高低可能是由不同结晶  相似文献   

20.
The self-cleaving hepatitis delta virus (HDV) ribozyme is essential for the replication of HDV, a liver disease causing pathogen in humans. The catalytically critical nucleotide C75 of the ribozyme is buttressed by a trefoil turn pivoting around an extruded G76. In all available crystal structures, the conformation of G76 is restricted by stacking with G76 of a neighboring molecule. To test whether this crystal contact introduces a structural perturbation into the catalytic core, we have analyzed approximately 200 ns of molecular dynamics (MD) simulations. In the absence of crystal packing, the simulated G76 fluctuates between several conformations, including one wherein G76 establishes a perpendicular base quadruplet in the major groove of the adjacent P1 stem. Second-site mutagenesis experiments suggest that the identity of the nucleotide in position 76 (N76) indeed contributes to the catalytic activity of a trans-acting HDV ribozyme through its capacity for hydrogen bonding with P1. By contrast, in the cis-cleaving genomic ribozyme the functional relevance of N76 is less pronounced and not correlated with the P1 sequence. Terbium(III) footprinting and additional MD show that the activity differences between N76 mutants of this ribozyme are related instead to changes in average conformation and modified cross-correlations in the trefoil turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号