首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The distribution of radioactivity in the three- and four-carbon saccharinic acids, lactic acid and 2,4-dihydroxybutyric acid, obtained from d-xylose-1-14C, d-glucose-1-14C, and d-glucose-6-14C, was measured. The relative importance of the various mechanisms for forming 2,4-dihydroxybutyric acid was determined. Recombination of two-carbon fragments was found to be an important mechanism at the high alkalinity and temperature employed.  相似文献   

5.
6.
7.
8.
9.
10.
:     
  相似文献   

11.
12.
13.
14.
The cyclic dodecapeptide PV, cyclo-(d-Val-l-Pro-l-Val-d-Pro)3, a structural analogue of the ion-carier valinomycin, increase the cation permeability of lipid bilayer membranes. This paper reports the results of two types of relaxation experiments, namely relaxation of the membrane current after a voltage jump and decay of the membrane voltage after a charge pulse in lipid bilayer membranes exposed to PV. From the relaxation data, the rate constant for the translocation of the ion carrier complex across the membrane, as well as the partition coefficient of the complex between water and membrane solution interface were computed and found to be about one order of magnitude less than the comparable values for valinomycin (Val). Furthermore, the dependence of the initial membrane conductivity on ion concentration was used to evaluate the equilibrium constant, K, of complexation between PV and some monovalent cations in water. The values of K yield the following selectivity sequence of PV: Na+ < NH4+ < K+ < Cs+ < Rb+. These and earlier results are consistent with the idea that PV promotes cation movement across membranes by the solution complexation mechanism which involves complexation between ion and carrier in the aqueous phase and transport of the carrier across the membrane. In the particular form of the solution complexation mechanism operating here, the PV present in the PV-cation complex carrying charge across the membrane derives from the side from which the current is flowing (cis-mechanism). As shown previously, valinomycin, in contrast to PV, acts by an interfacial complexation mechanism in which the Val in the Val-cation complex derives from the side toward which current is flowing (trans-mechanims). The comparison of the kinetic properties of these two closely related compounds yields interesting insights into the relationship between chemical structure and function of ion carriers.  相似文献   

15.
α-

New results obtained from a two-dimensional sequence analysis of the small heat shock protein (shsp) family are described. It is confirmed that the conserved C-terminal α-crystallin domain is essentially made of β-strands, most probably two groups of β-strands separated by a large loop. A direct correspondence between the putative β-strands that have been identified in shsps and the seven β-strands of a classical immunoglobulin-like fold is proposed. The hypothesis that the shsp family could belong to the immunoglobulin superfamily (IgSF) is consistent with the ubiquitous distribution and the multifunctional properties of the crystallins that are now emerging.  相似文献   

16.
17.
l-Alanylglycyl-l-alanylglycyl-l-alanylglycyl-l-serylglycine and its pentachlorophenyl ester methanesulphonate have been synthesized as monomers for the preparation of silk fibroin model polypeptide. The former octapeptide was polymerized with diphenylphosphorylazide (DPPA) and triethylamine in DMSO or in HMPA—pyridine, and the latter octapeptide pentachlorophenylester was polymerized by adding triethylamine in DMSO to give poly(l-alanylglycyl-l-alanylglycyl-l-alanylglycyl-l-serylglycine). This sequential polypeptide gave a similar i.r. pattern to the crystalline part of Bombyx mori silk fibroin, which indicated antiparallel β-conformation. Dialysis of the solution of this polymer in 60%, aqueous LiBr against water gave mainly the polymer of α-form. O.r.d. measurements suggest that this polypeptide exists as a random structure in dichloroacetic acid on in 60% aqueous LiBr.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号