首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Miura  A Hori-i  H Mototani  H Takeuchi 《Biochemistry》1999,38(35):11560-11569
The cellular form of prion protein is a precursor of the infectious isoform, which causes fatal neurodegenerative diseases through intermolecular association. One of the characteristics of the prion protein is a high affinity for Cu(II) ions. The site of Cu(II) binding is considered to be the N-terminal region, where the octapeptide sequence PHGGGWGQ repeats 4 times in tandem. We have examined the Cu(II) binding mode of the octapeptide motif and its pH dependence by Raman and absorption spectroscopy. At neutral and basic pH, the single octapeptide PHGGGWGQ forms a 1:1 complex with Cu(II) by coordinating via the imidazole N pi atom of histidine together with two deprotonated main-chain amide nitrogens in the triglycine segment. A similar 1:1 complex is formed by each octapeptide unit in (PHGGGWGQ)2 and (PHGGGWGQ)4. Under weakly acidic conditions (pH approximately 6), however, the Cu(II)-amide- linkages are broken and the metal binding site of histidine switches from N pi to N tau to share a Cu(II) ion between two histidine residues of different peptide chains. The drastic change of the Cu(II) binding mode on going from neutral to weakly acidic conditions suggests that the micro-environmental pH in the brain cell regulates the Cu(II) affinity of the prion protein, which is supposed to undergo pH changes in the pathway from the cell surface to endosomes. The intermolecular His(N tau)-Cu(II)-His(N tau) bridge may be related to the aggregation of prion protein in the pathogenic form.  相似文献   

2.
Based on the hypothetical proposal of Sulkowski [E. Sulkowski, FEBS Lett. 307 (2) (1992) 129] for the implication of transition metal ions in the structural changes/oligomerisation of normal cellular prion protein (PrPc) resulting in the pathological isoform (PrPsc), we focused our study on the octarepat domain of this protein which has been supposed to be the metal binding site. We have studied the copper binding to synthetic prion octarepeat peptides (PHGGGWGQ)n (n=1, 3, 6) using metal chelate and size-exclusion modes of chromatographies. This copper binding induces oligomerisation resulting in multiple aggregates. Moreover, heterogeneity of metal bound octarepeat oligomers by ESI-MS has been demonstrated. In addition, anti prion antibodies specific to the octarepeat region were used to discriminate between metal free and copper, nickel and zinc bound hexamer octarepeat peptide. Differential recognition of Cu(II) and Zn(II) bound complexes has been observed which signify differences in exposed epitopes of aggregated peptides.  相似文献   

3.
Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies were carried out on copper(II) complexes with chicken prion protein N-terminal fragments, Ac-(PHNPGY)4-NH2, and the mutated residue, Ac-(PHNPGF)4-NH2, to assess the role of tyrosine in the copper coordination. Both thermodynamic and spectroscopic results indicate that chicken prion fragments are not able to bind more than two copper ions and only with the involvement of side chain tyrosine groups. The prevailing complex shows one copper ion bound to four imidazole nitrogen atoms in the 1:1 metal to ligand ratio systems. The superoxide dismutase (SOD)-like activity of copper(II) complexes with the avian peptides and mammal analogue, Ac-(PHGGGWGQ)4-NH2, was also investigated by means of Pulse radiolysis. The copper(II) complexes with avian peptides do not display SOD-like activity, while very low activity has been detected for the copper(II) complexes with mammalian tetraoctarepeat.  相似文献   

4.
Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60-91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760-13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23-28, 57-91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly-Cu linkage is unstable below pH approximately 6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form.  相似文献   

5.
Structural studies of mammalian prion protein at pH values between 4.5 and 5.5 established that the N-terminal 100 residue domain is flexibly disordered. Here, we show that at pH values between 6.5 and 7.8, i.e. the pH at the cell membrane, the octapeptide repeats in recombinant human prion protein hPrP(23-230) encompassing the highly conserved amino acid sequence PHGGGWGQ are structured. The nuclear magnetic resonance solution structure of the octapeptide repeats at pH 6.2 reveals a new structural motif that causes a reversible pH-dependent PrP oligomerization. Within the aggregation motif the segments HGGGW and GWGQ adopt a loop conformation and a beta-turn-like structure, respectively. Comparison with the crystal structure of HGGGW-Cu(2+) indicates that the binding of copper ions induces a conformational transition that presumably modulates PrP aggregation. The knowledge that the cellular prion protein is immobilized on the cell surface along with our results suggests a functional role of aggregation in endocytosis or homophilic cell adhesion.  相似文献   

6.
The physical properties of non-viral vector/DNA nanoparticles in physiological aqueous solution are poorly understood. A Fluid Particle Image Analyser (FPIA), normally used for analysis of industrial and environmental fluids, was used to visualise individual (Lys)(16)-containing peptide/DNA particles. Eight (Lys)(16)-containing synthetic peptides were used to generate peptide/DNA particles at a constant + to - charge ratio of 2.8:1 with 10 microg/ml of plasmid DNA in phosphate buffered saline. Dynamic Light Scattering (DLS) and gene delivery studies were also performed. We present the first images of non-viral vector/DNA nanoparticles in physiological aqueous solution, together with precise measurements of individual particle size and shape in solution and, for the first time, an accurate measure of particle number. Particle size and shape, particle number, and efficiency for gene delivery varied markedly with different peptides. Under standard conditions for in vitro gene delivery, we estimate approximately 60 peptide/DNA nanoparticles per target cell, each containing approximately 70,000 plasmids. This novel capacity to image individual vector/DNA nanoparticles in solution and to count them accurately will enable a more precise assessment of non-viral gene delivery systems, and a more quantitative interpretation of gene delivery experiments.  相似文献   

7.
Visible circular dichroism (CD) spectra from the copper(II) titration of the metal-binding region of the prion protein, residues 57-98, were analyzed using the self-modeling curve resolution method multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS is a set of mathematical tools for estimating pure component spectra and composition profiles from mixture spectra. Model-free solutions (e.g., soft models) are produced under the assumption that pure component profiles should be nonnegative and unimodal. Optionally, equality constraints can be used when the concentration or spectrum of one or more species is known. MCR-ALS is well suited to complex biochemical systems such as the prion protein which binds multiple copper ions and thus gives rise to titration data consisting of several pure component spectra with overlapped or superimposed absorption bands. Our study reveals the number of binding modes used in the uptake of Cu2+ by the full metal-binding region of the prion protein and their relative concentration profiles throughout the titration. The presence of a non-CD active binding mode can also be inferred. We show that MCR-ALS analysis can be initialized using empirically generated or mathematically generated pure component spectra. The use of small model peptides allows us to correlate specific Cu2+-binding structures to the pure component spectra.  相似文献   

8.
In this study we investigated the role of Cu(2+), Mn(2+), Zn(2+), and Al(3+) in inducing defective conformational rearrangements of the recombinant human prion protein (hPrP), which trigger aggregation and fibrillogenesis. The research was extended to the fragment of hPrP spanning residues 82-146, which was identified as a major component of the amyloid deposits in the brain of patients affected by Gerstmann-Str?ussler-Scheinker (GSS) disease. Variants of the 82-146 wild-type subunit [PrP-(82-146)(wt)] were also examined, including entirely, [PrP-(82-146)(scr)], and partially scrambled, [PrP-(82-146)(106)(-)(126scr)] and [PrP-(82-146)(127)(-)(146scr)], peptides. Al(3+) strongly stimulated the conversion of native hPrP into the altered conformation, and its potency in inducing aggregation was very high. Despite a lower rate and extent of prion protein conversion into altered isoforms, however, Zn(2+) was more efficient than Al(3+) in promoting organization of hPrP aggregates into well-structured, amyloid-like fibrillar filaments, whereas Mn(2+) delayed and Cu(2+) prevented the process. GSS peptides underwent the fibrillogenesis process much faster than the full-length protein. The intrinsic ability of PrP-(82-146)(wt) to form fibrillar aggregates was exalted in the presence of Zn(2+) and, to a lesser extent, of Al(3+), whereas Cu(2+) and Mn(2+) inhibited the conversion of the peptide into amyloid fibrils. Amino acid substitution in the neurotoxic core (sequence 106-126) of the 82-146 fragment reduced its amyloidogenic potential. In this case, the stimulatory effect of Zn(2+) was lower as compared to the wild-type peptide; on the contrary Al(3+) and Mn(2+) induced a higher propensity to fibrillation, which was ascribed to different binding modalities to GSS peptides. In all cases, alteration of the 127-146 sequence strongly inhibited the fibrillogenesis process, thus suggesting that integrity of the C-terminal region was essential both to confer amyloidogenic properties on GSS peptides and to activate the stimulatory potential of the metal ions.  相似文献   

9.
The nuclear-encoded Sup35p protein is responsible for the prion-like [PSI(+)] determinant of yeast, with Sup35p existing largely as a high molecular weight aggregate in [PSI(+)] strains. Here we show that the five oligopeptide repeats present at the N-terminus of Sup35p are responsible for stabilizing aggregation of Sup35p in vivo. Sequential deletion of the oligopeptide repeats prevented the maintenance of [PSI(+)] by the truncated Sup35p, although deletants containing only two repeats could be incorporated into pre-existing aggregates of wild-type Sup35p. The mammalian prion protein PrP also contains similar oligopeptide repeats and we show here that a human PrP repeat (PHGGGWGQ) is able functionally to replace a Sup35p oligopeptide repeat to allow stable [PSI(+)] propagation in vivo. Our data suggest a model in which the oligopeptide repeats in Sup35p stabilize intermolecular interactions between Sup35p proteins that initiate establishment of the aggregated state. Modulating repeat number therefore alters the rate of yeast prion conversion in vivo. Furthermore, there appears to be evolutionary conservation of function of the N-terminally located oligopeptide repeats in prion propagation.  相似文献   

10.
N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe)4-CONH2, was more lipophilic than its non-methylated analog Ac-(Phe)4-CONH2. In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe)4-CONH2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood–brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.  相似文献   

11.
Pathogenic prion proteins (PrP(Sc)) are thought to be produced by alpha-helical to beta-sheet conformational changes in the normal cellular prion proteins (PrP(C)) located solely in the caveolar compartments. In order to inquire into the possible conformational changes due to the influences of hydrophobic environments within caveolae, the secondary structures of prion protein peptides were studied in various kinds of detergents by CD spectra. The peptides studied were PrP(129-154) and PrP(192-213); the former is supposed to assume beta-sheets and the latter alpha-helices, in PrP(Sc). The secondary structure analyses for the CD spectra revealed that in buffer solutions, both PrP(129-154) and PrP(192-213) mainly adopted random-coils (approximately 60%), followed by beta-sheets (30%-40%). PrP(129-154) showed no changes in the secondary structures even in various kinds of detergents such as octyl-beta-D-glucopyranoside (OG), octy-beta-D-maltopyranoside (OM). sodium dodecyl sulfate (SDS), Zwittergent 3-14 (ZW) and dodecylphosphocholine (DPC). In contrast, PrP(192-213) changed its secondary structure depending on the concentration of the detergents. SDS, ZW, OG and OM increased the alpha-helical content, and decreased the beta-sheet and random-coil contents. DPC also increased the alpha-helical content, but to a lesser extent than did SDS, ZW, OG or OM. These results indicate that PrP(129-154) has a propensity to adopt predominantly beta-sheets. On the other hand, PrP(192-213) has a rather fickle propensity and varies its secondary structure depending on the environmental conditions. It is considered that the hydrophobic environments provided by these detergents may mimic those provided by gangliosides in caveolae, the head groups of which consist of oligosaccharide chains containing sialic acids. It is concluded that PrP(C) could be converted into a nascent PrP(Sc) having a transient PrP(Sc) like structureunder the hydrophobic environments produced by gangliosides.  相似文献   

12.
Prasad KK  Verma S 《Biopolymers》2006,83(3):289-296
Glycine residues play an intriguing role in peptide/protein structure where they can act as tightly packing amino acids with flexible bond angles. For example, structural role of glycines is highlighted in natural silk fibers where different structural polymorphs have been reported. This study deals with a glycine-rich segment from the conserved octarepeat (PHGGGWGQ) in prion protein. We have synthesized a bis-conjugate 3, containing a truncated pentapeptide segment (GGGWG), to study its time-dependent solution phase aggregation by a combination of microscopic methods and fluorescence. This discontinuous peptide conjugate 3 exhibited interesting photophysical properties upon self-assembly allowing us to propose a possible model of peptide filament formation. Taking note of the fact that prion octarepeats bind copper, we also demonstrate the ability of this conjugate to bind copper and the growth and ultrastructure of metallized fibers formed upon incubation. Enforcing peptide fiber formation in metal binding motifs offers an entry into metal impregnated fibers for possible nanobiotechnological applications.  相似文献   

13.
Shiraishi N  Nishikimi M 《FEBS letters》2002,511(1-3):118-122
The amino-terminal part of prion protein (PrP), containing a series of octapeptide repeats with the consensus sequence PHGGGWGQ, has been implicated in the binding of copper ion. This region possesses amino acid residues susceptible to oxidation, such as histidine, lysine, arginine and proline. In this study, we have investigated copper-catalyzed oxidation of an N-terminal part of human PrP, PrP23-98, that was prepared by the recombinant DNA technique. Carbonyl formations on copper-bound PrP23-98 induced by dopamine and L-ascorbate were analyzed kinetically, and it was found that the redox cycling of PrP23-98-bound copper, especially induced by dopamine, was coupled to the formation of carbonyls on the protein.  相似文献   

14.
The amino acid sequences in the amyloidogenic region (amino acids 108–144) of several mammalian prion proteins were compared and variations were found to occur at residues 109 (M or L), 112 (M or V), 129 (M, V, or L), 135 (N or S), 138 (M, L, or I), 139 (M or I), and 143 (N or S). Using the bovine PrP peptide (residues 108–144 based on the numbering of the human prion protein sequence) as a control peptide, several peptides with one amino acid differing from that of the bovine PrP peptide at residues 109, 112, 135, 138, 139, or 143 and several mammalian PrP peptides were synthesized, and the effects of these amino acid substitutions on the amyloidogenic properties of these peptides were compared and discussed on the basis of the chemical and structural properties of amino acids. Our results showed that the V112M substitution accelerated nucleation of amyloidogenesis, while the N143S and I139M substitutions retarded nucleation. These effects tended to cancel each other out when two substitutions with opposite effects were present on the same peptide. Moreover, acceleration or inhibition of nucleation was not necessarily correlated with effect on seeding efficiency. Using amyloid fibrils prepared from the bovine PrP peptide as seeds, the seeding efficiency for the monomer peptides with the M129L, S135N, N143S, or I139M substitution was decreased compared to that for bPrP peptide. Of all the mammalian peptides used in this study, the dog, mule deer, and pig PrP peptides had the lowest seeding efficiencies.  相似文献   

15.
Insect neuropeptides of the insect kinin class share a common C-terminal pentapeptide sequence F(1)X(1)(2)X(2)(3)W(4)G(5)-NH(2) (X(2)(3) = P, S, A) and regulate such critical physiological processes as water balance and digestive enzyme release. Analogs of the insect kinin class, in which the critical residues of F(1), P(3), and W(4) were replaced with beta(3)-amino acid or their beta(2)-homo-amino acid variants, have been synthesized by the solid phase peptide strategy. The resulting single- and double-replacement analogs were evaluated in an insect diuretic assay and enzyme digestion trials. Analogs modified in the core P(3) position produce a potent and efficacious diuretic response that is not significantly different from that obtained with the endogenous achetakinin peptides. The analogs also demonstrate enhanced resistance to hydrolysis by ACE and NEP, endopeptidases that inactivate the natural insect neuropeptides. This paper describes the first instance of beta-amino acids analogs of an arthropod peptide that demonstrate significant bioactivity and resistance to peptidase degradation.  相似文献   

16.
The intrinsically disordered amino-proximal domain of hamster prion protein (PrP) contains four copies of a highly conserved octapeptide sequence, PHGGGWGQ, that is flanked by two polycationic residue clusters. This N-terminal domain mediates the binding of sulfated glycans, which can profoundly influence the conversion of PrP to pathological forms and the progression of prion disease. To investigate the structural consequences of sulfated glycan binding, we performed multidimensional heteronuclear (1H, 13C, 15N) NMR (nuclear magnetic resonance), circular dichroism (CD), and fluorescence studies on hamster PrP residues 23-106 (PrP 23-106) and fragments thereof when bound to pentosan polysulfate (PPS). While the majority of PrP 23-106 remain disordered upon PPS binding, the octarepeat region adopts a repeating loop-turn structure that we have determined by NMR. The β-like turns within the repeats are corroborated by CD data demonstrating that these turns are also present, although less pronounced, without PPS. Binding to PPS exposes a hydrophobic surface composed of aligned tryptophan side chains, the spacing and orientation of which are consistent with a self-association or ligand binding site. The unique tryptophan motif was probed by intrinsic tryptophan fluorescence, which displayed enhanced fluorescence of PrP 23-106 when bound to PPS, consistent with the alignment of tryptophan side chains. Chemical-shift mapping identified binding sites on PrP 23-106 for PPS, which include the octarepeat histidine and an N-terminal basic cluster previously linked to sulfated glycan binding. These data may in part explain how sulfated glycans modulate PrP conformational conversions and oligomerizations.  相似文献   

17.
An understanding of structural changes and self-assembly of proteins, which are thought to involve specific peptide?Cpeptide interactions, will contribute to the development of therapeutic agents and diagnosis for the detection of conformational diseases. We hypothesize that certain peptides may contribute to the conformational change of prion proteins. The present paper describes the discovery of prion-related synthetic peptides which influence structural conversion of recombinant bovine prion protein. The peptides designed are prion-protein fragments containing core domains consisting of ??-helical (human prion protein fragment 180?C195) and known ??-sheet (human prion protein fragment 169?C175) structures. Additionally several reported known ??-sheet breaker peptides and a conjugate consisting of ??-sheet and ??-helix segments based on the secondary structures of human prion protein, designated HPPSH, have been chemically synthesized by the conventional Fmoc solid-phase method and characterized by circular dichroism and the Thioflavin T fluorescence method. Our data indicated that the co-existence of peptides, HPPSH or other prion fragment peptides involving toxic core sequence (the fragment 106?C126), influenced the kinetic rate of aggregation and the lag-time of fibril formation of recombinant bovine prion protein except the core sequence itself. The method will be used for discovery of responsible material from natural resources. And designed peptides can be also used for bio-detection.  相似文献   

18.
Peptides derived from the unprocessed N-termini of mouse and bovine prion proteins (mPrPp and bPrPp, respectively), comprising hydrophobic signal sequences followed by charged domains (KKRPKP), function as cell-penetrating peptides (CPPs) with live cells, concomitantly causing toxicity. Using steady-state fluorescence techniques, including calcein leakage and polarization of a membrane probe (diphenylhexatriene, DPH), as well as circular dichroism, we studied the membrane interactions of the peptides with large unilamellar phospholipid vesicles (LUVs), generally with a 30% negative surface charged density, comparing the effects with those of the CPP penetratin (pAntp) and the pore-forming peptide melittin. The prion peptides caused significant calcein leakage from LUVs concomitant with increased membrane ordering. Fluorescence correlation spectroscopy (FCS) studies of either rhodamine-entrapping (REVs) or rhodamine-labeled (RLVs) vesicles, showed that addition of the prion peptides resulted in significant release of rhodamine from the REVs without affecting the overall integrity of the RLVs. The membrane leakage effects due to the peptides had the following order of potency: melittin > mPrPp > bPrPp > pAntp. The membrane perturbation effects of the N-terminal prion peptides suggest that they form transient pores (similar to melittin) causing toxicity in parallel with their cellular trafficking.  相似文献   

19.
The interaction of three bioactive peptides, bombesin, beta-endorphin, and glucagon with a phosphatidylcholine monolayer that was immobilized to porous silica particles and packed into a stainless steel column cartridge, has been studied using dynamic elution techniques. This immobilized lipid monolayer provides a biophysical model system with which to study the binding of peptides to a lipid membrane. In particular, the influence of temperature and methanol concentration on the affinity of each peptide for the immobilized lipid surface was assessed. For all test peptides, nonlinear retention plots were observed at all temperatures that contrasted sharply with the simple linear plots observed for the small unstructured control molecules N-acetyltryptophanamide and diphenylalanine. An analysis of the thermodynamics of the interaction of peptides with the immobilized monolayer was also carried out. The results revealed that while the peptides interacted with the monolayer predominantly through hydrophobic interactions, the relative contribution of DeltaH(assoc)(O) and DeltaS(assoc)(O) to the overall free energy of association was dependent on the temperature and methanol concentration. In particular, it was evident that under most conditions, the binding of the peptides to the immobilized lipid monolayer was enthalpy-driven, i.e., mediated by nonclassical hydrophobic interactions. Significant band-broadening and asymmetric and split peaks were also observed for bombesin, beta-endorphin, and glucagon at different temperatures and methanol concentrations. These changes in affinity and peak shape are consistent with the formation of multiple conformational species during the interaction of these peptides with the lipid monolayer. In addition, the binding behavior of the three test peptides on an n-octylsilica surface that lacked the phospho headgroups of the phospholipid was significantly different from that observed with the immobilized phosphatidylcholine surface, indicating a specificity of interaction between the peptides and the lipid surface. Overall, these experimental results demonstrate that the biomimetic phosphatidylcholine monolayer provides a stable and sensitive system with which to explore the molecular mechanism of peptide conformational changes during membrane interactions.  相似文献   

20.
The susceptibility of the cellular prion protein (PrPC) to convert to an alternative misfolded conformation (PrPSc), which is the key event in the pathogenesis of prion diseases, is indicative of a conformationally flexible native (N) state. In the present study, hydrogen-deuterium exchange (HDX) in conjunction with mass spectrometry and nuclear magnetic resonance spectroscopy were used for the structural and energetic characterization of the N state of the full-length mouse prion protein, moPrP(23–231), under conditions that favor misfolding. The kinetics of HDX of 34 backbone amide hydrogens in the N state were determined at pH 4. In contrast to the results of previous HDX studies on the human and Syrian hamster prion proteins at a higher pH, various segments of moPrP were found to undergo different extents of subglobal unfolding events at pH 4, a pH at which the protein is known to be primed to misfold to a β-rich conformation. No residual structure around the disulfide bond was observed for the unfolded state at pH 4. The N state of the prion protein was observed to be at equilibrium with at least two partially unfolded forms (PUFs). These PUFs, which are accessed by stochastic fluctuations of the N state, have altered surface area exposure relative to the N state. One of these PUFs resembles a conformation previously implicated to be an initial intermediate in the conversion of monomeric protein into misfolded oligomer at pH 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号