共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 M) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane. 相似文献
2.
The ciliated protozoan Paramecium tetraurelia contained two protein kinase activities that were dependent on Ca2+. We purified one of the enzymes to homogeneity by Ca2+-dependent affinity chromatography on phenyl-Sepharose and ion exchange chromatography. The purified enzyme contained polypeptides of 50 and 55 kDa, with the 50-kDa species predominant. From its Stokes radius (32 A) and sedimentation coefficient (3.9 S), we calculated a native molecular weight of 51,000, suggesting that the active form is a monomer. Its specific activity was 65-130 nmol X min-1 X mg-1 and the Km for ATP was 17-35 microM, depending on the exogenous substrate used. Kinase activity was completely dependent upon Ca2+; half-maximal activation occurred at approximately 1 microM free Ca2+ at pH 7.2. Phosphatidylserine and diacylglycerol did not stimulate activity, nor did the addition of purified Paramecium calmodulin. The enzyme phosphorylated casein and histones, forming primarily phosphoserine and phosphothreonine, respectively. It also catalyzed its own phosphorylation in a Ca2+-dependent reaction; the half-maximal rate of autophosphorylation occurred at approximately 1-1.5 microM free Ca2+, and both the 50- and 55-kDa species were autophosphorylated. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation in situ, the 50-kDa protein retained its Ca2+-dependent ability to phosphorylate casein, suggesting that Ca2+ interacts directly with this polypeptide. This was confirmed by direct binding studies; when the enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis transferred to nitrocellulose, and renatured, there was 45Ca2+-binding in situ to both the 50- and 55-kDa polypeptides. The Paramecium enzyme appears to be a new and unique type of Ca2+-dependent protein kinase. 相似文献
3.
Determination of Ca2+- and phospholipid-dependent protein kinase in rat liver membranes 总被引:1,自引:0,他引:1
A method has been developed to measure the Ca2+- and phospholipid-dependent protein kinase in membrane fractions. The method is based on the fact that this enzyme is resistant to comparatively high concentrations of octylglycoside. Rat liver membranes were treated with octylglycoside and the phosphate incorporation from [gamma-32P]ATP was measured in the presence of histone H1. The enzyme activity was determined as the difference between the incorporation obtained after addition of Ca2+ and phosphatidylserine and the incorporation obtained without these additions but with EGTA. The endogenous incorporation of phosphate to membrane components was constant under these incubation conditions. The conditions for determination of the membrane-bound enzyme were optimized. Two thirds of the total enzymic activity was attached to membranes in rat liver cells. A highly purified plasma membrane preparation had the highest specific activity, while most of the bound enzyme was found in microsomes, and only traces were found in mitochondria. 相似文献
4.
Ca2+-dependent hydrophobic-interaction chromatography. Isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. 总被引:4,自引:5,他引:4
M P Walsh K A Valentine P K Ngai C A Carruthers M D Hollenberg 《The Biochemical journal》1984,224(1):117-127
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C. 相似文献
5.
ATP-dependent Ca2+ uptake and Ca2+-dependent protein phosphorylation in basolateral liver plasma membranes 总被引:1,自引:0,他引:1
C Evers G Hugentobler R Lester P Gmaj P Meier H Murer 《Biochimica et biophysica acta》1988,939(3):542-550
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump. 相似文献
6.
《Cell calcium》2016,59(6):577-588
Rises in cytosolic Ca2+ concentration ([Ca2+]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca2+]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca2+]cyt (Ca2+ buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca2+ or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca2+ signalling, we here monitor Ca2+ flux around the platelet by measuring net Ca2+ fluxes to or from the extracellular space and the intracellular Ca2+ stores, which act as the major sources and sinks for Ca2+ influx into and efflux from the cytosol, as well as monitoring the cytosolic Na+ concentration ([Na+]cyt), which influences platelet Ca2+ fluxes via Na+/Ca2+ exchange. The intracellular store Ca2+ concentration ([Ca2+]st) was monitored using Fluo-5N, the extracellular Ca2+ concentration ([Ca2+]ext) was monitored using Fluo-4 whilst [Ca2+]cyt and [Na+]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca2+]cyt in the absence of extracellular Ca2+. PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca2+ release and Ca2+ removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca2+]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na+]cyt which would be expected to reduce Ca2+ removal via the Na+/Ca2+ exchanger (NCX). Thrombin-evoked rises in [Na+]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn2+ quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca2+]cyt following SERCA inhibition and either removal of extracellular Na+ or inhibition of Na+/K+-ATPase activity by removal of extracellular K+ or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca2+]cyt by acceleration of SERCA activity, whilst rises in [Ca2+]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na+/K+-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na+]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca2+ signalling. 相似文献
7.
Staurosporine, a protein kinase C inhibitor, attenuates Ca2+-dependent stretch-induced vascular tone 总被引:1,自引:0,他引:1
The effects of protein kinase C inhibition by staurosporine was studied on Ca-dependent tone of the rabbit facial vein. Tone was produced either by stretch or by readmission of Ca2+ in a non-depolarizing Ca2+-free salt solution. Stretch-induced tone was inhibited by staurosporine. When tissues were incubated in a Ca2+-free solution, staurosporine (50 nM) inhibited the contractile responses produced by readmission of Ca2+. These observations suggest that maintenance of stretch-induced extracellular Ca2+-dependent tone may be regulated by protein kinase C. 相似文献
8.
Suzuki Y Zhang H Saito N Kojima I Urano T Mogami H 《The Journal of biological chemistry》2006,281(39):28499-28507
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose. 相似文献
9.
The calmodulin and C-kinase antagonists melittin, calmidazolium, N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W7), and trifluoperazine (TFP) also inhibit the activity of the human erythrocyte Ca2+-dependent protease, calpain I. W-5, the nonchlorinated derivative of W-7, was ineffective as an inhibitor of calpain I just as it is for calmodulin and protein kinase C. Dose response studies provided the following IC50 values: melittin, 2.6 microM; calmidazolium, 6.2 microM; trifluoperazine, 130 microM; W-7, 251 microM. These IC50 values indicate that the compounds have affinities 10 to 600 fold less for calpain I than for calmodulin; however, the affinities of the inhibitory compounds are comparable for calpain I and protein kinase C. Kinetic analysis indicates that the compounds are competitive inhibitors of calpain I with respect to substrate. 相似文献
10.
T Ishizuka K Kajita K Kamikubo T Komaki K Miura S Nagao Y Nozawa 《Endocrinologia japonica》1987,34(6):965-968
We have examined the activities of phospholipid/Ca2+-dependent and cyclic AMP-dependent protein kinases of the parathyroid adenomas and the atrophic glands which were resected from three patients with primary hyperparathyroidism. Phospholipid/Ca2+-dependent protein kinase activity of atrophic parathyroid gland was exclusively present in cytosol fraction (90.7 +/- 12.3%). On the other hand, phospholipid/Ca2+-dependent protein kinase activity of parathyroid adenomas was 66.9 +/- 6.4% in cytosol and 33.1 +/- 6.4% in membrane fraction, suggesting a translocation of the enzyme from the cytosol to the membranes. Cyclic AMP-dependent protein kinase activity appeared to be higher in parathyroid adenoma than in atrophic parathyroid gland in both cytosol and membrane fractions. 相似文献
11.
Sphingosylphosphorylcholine stimulates mitogen-activated protein kinase via a Ca2+-dependent pathway 总被引:1,自引:0,他引:1
In cultured porcine aortic smooth muscle cells,sphingosylphosphorylcholine (SPC), ATP, or bradykinin (BK) induced arapid dose-dependent increase in the cytosolicCa2+ concentration([Ca2+]i)and also stimulated inositol 1,4,5-trisphosphate(IP3) generation. Pretreatmentof cells with pertussis toxin blocked the SPC-induced IP3 generation and[Ca2+]iincrease but had no effect on the action of ATP or BK. In addition, SPCstimulated the mitogen-activated protein kinase (MAPK) and increasedDNA synthesis, whereas neither ATP nor BK produced such effects. Boththe SPC-induced MAPK activation and DNA synthesis were pertussis toxinsensitive. SPC-induced MAPK activation was blocked by treatment ofcells with the phospholipase C inhibitor, U-73122, or the intracellularCa2+-ATPase inhibitor,thapsigargin, but not by removal of extracellular Ca2+. Lysophosphatidic acidinduced cellular responses similar to SPC in a pertussistoxin-sensitive manner in terms of[Ca2+]iincrease, IP3 generation, MAPKactivation, and DNA synthesis. Platelet-derived growth factor (PDGF)also induced a[Ca2+]iincrease, MAPK activation, and DNA synthesis in the same cells; however, the PDGF-induced MAPK activation was not sensitive to pertussis toxin and changes in[Ca2+]i.SPC-induced MAPK activation was inhibited by pretreatment of cells withstaurosporine, W-7, or calmidazolium. Our results suggest that, inporcine aortic smooth muscle cells, MAPK is not activated by theincrease in[Ca2+]iunless a pertussis toxin-sensitive G protein is simultaneously stimulated, indicating the role ofCa2+ in pertussis toxin-sensitiveG protein-mediated MAPK activation. 相似文献
12.
Zoltan Olah Laszlo Bogre Csaba Lehel Anna Farago Janos Seprodi Denes Dudits 《Plant molecular biology》1989,12(4):453-461
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts. 相似文献
13.
14.
《The International journal of biochemistry》1984,16(12):1391-1394
- 1.1. Heparin stimulates the activity of nonactivated and activated skeletal muscle phosphorylase kinase in a Ca2+-dependent manner.
- 2.2. The stimulatory effect of heparin on the activity of nonactivated phosphorylase kinase is also expressed in the presence of calmodulin and glycogen. Heparin acted in synergism with glycogen.
- 3.3. Heparin increases the affinity of phosphorylase kinase to Ca2+ 5–12 fold depending upon the activation conditions.
- 4.4. Ca2+ influences the stimulation of liver phosphorylase kinase by heparin in a similar way.
15.
The effects of protein kinase C (PKC) activation and inhibition on the inositol 1,4,5-trisphosphate (IP3) and cytosolic Ca2+ ([Ca2+]i) responses of rat submandibular acinar cells were investigated. IP3 formation in response to acetylcholine (ACh) was not affected by the PKC activator phorbol 12-myristate 13-acetate (PMA), nor by the PKC inhibitor calphostin C (CaC). The ACh-elicited initial increase in [Ca2+]i in the absence of extracellular Ca2+ was not changed by short-term (0.5 min) exposure to PMA, but significantly reduced by long-term (30 min) exposure to PMA, and also by pre-exposure to the PKC inhibitors CaC and chelerythrine chloride (ChC). After ACh stimulation, subsequent exposure to ionomycin caused a significantly (258%) larger [Ca2+]i increase in CaC-treated cells than in control cells. However, pre-exposure to CaC for 30 min did not alter the Ca2+ release induced by ionomycin alone. These results suggest that the reduction of the initial [Ca2+]i increase is due to an inhibition of the Ca2+ release mechanism and not to store shrinkage. The thapsigargin (TG)-induced increase in [Ca2+]i was significantly reduced by short-term (0.5 min), but not by long-term (30 min) exposure to PMA, nor by pre-exposure to ChC or CaC. Subsequent exposure to ionomycin after TG resulted in a significantly (70%) larger [Ca2+]i increase in PMA-treated cells than in control cells, suggesting that activation of PKC slows down the Ca2+ efflux or passive leak seen in the presence of TG. Taken together, these results indicate that inhibition of PKC reduces the IP3-induced Ca2+ release and activation of PKC reduces the Ca2+ efflux seen after inhibition of the endoplasmic Ca2+-ATPase in submandibular acinar cells. 相似文献
16.
The multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase 总被引:5,自引:0,他引:5
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells. 相似文献
17.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity. 相似文献
18.
19.
In regenerating rat liver, an elevated protein kinase activity was detected which phosphorylated ribosomal protein S6 and histones. The properties of this enzyme were closely similar with those of protease-activated protein kinase C with Mr 45,000. During the study of the mechanism of proteolytic activation, type III protein kinase C (encoding alpha-sequence) was shown to be subjected to limited proteolysis by trypsin-like protease and converted to protein kinase M in ionic strength- and pH-dependent manner. This reaction was stimulated in the presence of Ca2+ and phospholipid under slightly higher ionic strength condition than physiological level (greater than 140 mM NaCl) and alkaline pH (7.5-8.0). These results suggest that activation of Na+/H+ exchanger in plasma membrane may trigger this type of proteolytic activation of protein kinase C. In addition to protein kinase M, another type of protease-activated kinase with Mr 80,000 was detected when limited proteolysis of protein kinase C was performed on inactive form of this enzyme (in the absence of either Ca2+ or phospholipid or both activators) under lower ionic strength condition. The molecular mass of this active enzyme was slightly smaller (approximately 200) than that of native protein kinase C. However, it is not clear at this time whether this small fragment was released from amino-terminal or carboxy-terminal domain to make protein kinase C partially active in the absence of Ca2+ and phospholipid. Although it has been proposed that proteolytic degradation of protein kinase C is involved in down regulation of this enzyme, the physiological significance of these two types of protease-activated forms of protein kinases in liver has remained obscure. 相似文献
20.
X T Fan X P Huang M Castagna 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1991,313(1):15-20
Ca2+ requirement for protein kinase C activation is a matter of controversy. In this report we have examined Ca2+ dependency of the reaction in different assay systems and shown that the enzyme response to Ca2+, as well as diacylglycerol, depends upon phospholipid species, protein substrate and lipid conformation (micelles or sonicates). These results emphasize that the enzyme characteristics as defined in reconstituted membrane systems may not have a physiological relevance. 相似文献