首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
大鼠肺动脉平滑肌细胞钙激活氯通道电流的电生理检测   总被引:1,自引:0,他引:1  
目的:研究大鼠肺动脉平滑肌细胞钙激活氯通道电流的电生理特性。方法:膜片钳全细胞和膜内向外记录模式检测大鼠肺动脉平滑肌细胞上钙激活氯通道全细胞电流和单通道电流。结果:大鼠肺动脉平滑肌细胞记录到稳定的钙激活氯通道电流(ICl(Ca));ICl(Ca)表现出典型的外向整流特性和电压时间依赖性激活。结论:大鼠肺动脉平滑肌细胞膜上存在电压、时间依赖性氯通道电流,钙激活氯通道通过促进肺动脉平滑肌细胞去极化而成为调节肺动脉特性的关键调节因子。  相似文献   

2.
哺乳动物胃粘膜壁细胞存在两种氯离子通道,分别定位于其分泌膜和基底膜。分泌膜氯通道具有电压依赖性,主要生理功能是直接参与胃酸分泌。基底膜氯通道是非电压依赖性的。 维持膜电位方面起重要作用,可能还参与胃酸分泌的调节。  相似文献   

3.
李志远 《生命科学》2000,12(4):148-151
内皮细胞在心血管系统具有重要功能,除通过分泌内皮舒张因子--一氧化氮(NO)及收缩性物质内皮素等控制血管平滑肌张力外,并能调节血管通透性。近年来发现内皮细胞上的C1^-通道能调节细胞体积和细胞膜电位的稳定性。通过离子通道调控膜电位一机理,能较好理解血管内皮的功能,并可望由此开拓新型血管药物。本文综述了内皮细胞的C1^-通道的电生理特性、类别,并探讨该通道调控细胞体积,NO的分泌及调控细胞膜电位的可  相似文献   

4.
目的:研究HERG钾通道在细胞容量调节中的作用,并探讨其作用机制。方法:全部试验应用稳定转染HERG-HEK293细胞和HEK293细胞。应用全细胞膜片钳技术记录HERG钾电流。结果:1当HERG-HEK293细胞处于低渗状态,指令电压为0 mV时,Istep增加60%(n=12,P0.05);如指令电压为+30 mV,Itail增加72.1%(n=11,P0.01),增大的HERG电流可被特异性HERG钾电流阻断剂Cisapride(100nM)抑制,Istep被抑制97.2%(n=6,P0.01),Itail被抑制174.1%(n=6,P0.01)。2在低渗状态,指令电压为0 mV时,容量调节性氯通道阻断剂尼氟灭酸(NFA,10 nmol/L)使Istep抑制46.2%(n=12,P0.01),Itail抑制48.5%(n=11,P0.01);给以容量调节性氯通道阻断剂DIDS 100μmol/L时,Istep抑制45.9%(n=12,P0.01),Itail抑制51.1%(n=11,P0.01)。结论:HERG通道部分参与调节性细胞容量下降过程。其参与的细胞容量调节与容量调节性氯通道的激活相伴随。  相似文献   

5.
ATP敏感钾通道(ATP-sensitive potassium channel, KATP通道)广泛分布在血管系统,并在血管张力调节中发挥重要作用。 KATP通道由4个孔道形成的内向整流钾离子通道(inward rectifier K+ channels, Kir)亚基和4个磺脲受体调节亚基(sulfonylu-rea receptor, SUR)组成。尽管其它一些亚基在血管中也存在,Kir6.1/SUR2B是主要的血管亚型KATP通道。KATP通道转基因小鼠的研究以及人群中KATP通道基因突变的发现,都强烈支持KATP通道对于心血管系统的动态平衡调控是不可缺少的。大量的血管活性物质通过调节KATP通道活性来改变血管平滑肌细胞的膜电位,从而调节血管张力。多数内源性血管收缩物质,例如血管加压素,激活蛋白激酶C (protein kinase C, PKC),磷酸化KATP通道并抑制其活性;而血管扩张物质,如血管活性肠肽,通过增加cAMP的形成和提高蛋白激酶A (protein kinase A, PKA)的活性来增加KATP通道的活性。PKC作用于Kir6.1亚基C-末端,磷酸化4个保守的丝氨酸,而PKA磷酸化SUR2B亚基第2核苷酸结合域的Ser1387位点。血管KATP通道也受活性氧的调节,其中Kir6.1的Cys176是一个重要的过氧化物调节位点。此外,KATP通道功能可被一些慢性的病理生理条件上调,如感染性休克。核因子-κB依赖的基因转录是脂多糖诱导的血管KATP通道激活的一个机制。本综述将概括性描述血管KATP通道在生理和病理情况下受到的调节,以期阐明血管KATP通道在治疗和预防心血管疾病方面可能是一个有用的靶点。  相似文献   

6.
血管紧张素Ⅱ(Ang Ⅱ)不仅发挥着收缩血管和调节血压的功能,还参与炎症、内皮细胞功能障碍、动脉粥样硬化、高血压和充血性心衰的发生与发展.Ang Ⅱ通过AT1受体,激活内皮细胞MAPK、NADPH和ROS、非受体酪氨酸激酶及受体酪氨酸激酶通路产生各种生物学效应,参与内皮细胞功能调节,引发内皮细胞功能障碍和血管的炎症反应.  相似文献   

7.
氯通道:在心脏中起何作用?   总被引:2,自引:0,他引:2  
Zhou SS 《生理学报》2006,58(2):104-109
在心脏中发现氯通道已有十余年,目前已知氯通道是一类成员较多的离子通道超家族。心肌氯通道的作用可能是多重的,由于阻断氯通道或Cl^-替代对心肌的电特性产生明显影响,而心肌氯通道的种类和分布又存在明显的种属差异,提示心肌氯通道的主要作用可能在于调控阳离子通道,或为阳离子通道的正常活动提供一个合适的离子环境。因此,研究氯通道与阳离子通道之间的关系可能有重要的生理和病理生理学意义。  相似文献   

8.
利用膜片钳及内皮细胞流动小室方法对大鼠脑微血管内皮细胞在剪切力作用下内皮细胞膜K 通道的开放进行了初步研究 ,结果提示脑微血管内皮细胞膜上存在剪切力敏感的K 通道 ,剪切力作用后 ,内皮细胞膜上K 电流明显增大 ,此电流有明显的短暂延迟现象 ,也可以被胞外施加的TEA抑制 ,符合IKv特征。流动剪切力可以通过影响内皮细胞膜上的K 通道的开放引起穿细胞的离子通透性的增加 ,进而引起细胞内Ca2 的变化。在K 、Ca2 等离子浓度改变的诱导下可以促使G -Actin装配为F -Actin。同时诱导内皮细胞内钙库调节机制的激活 ,这些变化都可以进一步引起细胞信号转导机制的激活。该工作为进一步开展剪切力对微血管内皮细胞信号转导机制的影响提供了实验数据。  相似文献   

9.
田萌  吴媛媛  谢锋  卫培峰  陈琳  李敏 《生命科学》2020,32(5):453-460
瞬时受体电位(TRP)通道是一类重要的非选择性阳离子通道,其家族成员众多,参与多种生理病理过程。其中,TRP通道的异常表达及功能改变与心脑血管疾病的发生发展密切相关。近年研究发现,通过拮抗或者激活TRP通道可以调节血管内皮和血管平滑肌功能,参与心脑血管疾病的调控。该文主要从TRP通道的结构及各亚家族蛋白基于血管内皮和血管平滑肌对心脑血管系统疾病的作用及机制作一综述,为心脑血管疾病的防治提供新思路。  相似文献   

10.
血管平滑肌收缩的Ca^2+信号调节机制   总被引:2,自引:0,他引:2  
血管平滑肌细胞内Ca^2+的浓度([Ca^2+]i)的变化及胞内收缩蛋白对Ca^2+的敏感性是影响血管紧张的主要因素。研究表明细胞内Ca^2+浓度的变化在血管平滑肌细胞的激活中发挥重要作用。在静息状态,细胞内的Ca^2+浓度主要受膜电位的调节,同时,[Ca^2+]i也可反馈调节膜电位。在平滑肌细胞内存在多种[Ca^2+]i调节机制。本文概述了这些机制在调节血管平滑肌紧张中的作用,主要包括:[Ca^2+]i在血管平滑肌收缩中的作用;环二磷酸腺苷(cADPR)在调节Ca^2+释放中的作用;cADPR介导的肉桂碱受体的激活在调节平滑肌紧张度中的作用;血管平滑肌细胞的Ca^2+闪烁和细胞膜Ca^2+敏感性钾通道的激活;[Ca^2+]i与膜电位之间的相互作用等。  相似文献   

11.
S4 movement in a mammalian HCN channel   总被引:6,自引:0,他引:6  
Hyperpolarization-activated, cyclic nucleotide-gated ion channels (HCN) mediate an inward cation current that contributes to spontaneous rhythmic firing activity in the heart and the brain. HCN channels share sequence homology with depolarization-activated Kv channels, including six transmembrane domains and a positively charged S4 segment. S4 has been shown to function as the voltage sensor and to undergo a voltage-dependent movement in the Shaker K+ channel (a Kv channel) and in the spHCN channel (an HCN channel from sea urchin). However, it is still unknown whether S4 undergoes a similar movement in mammalian HCN channels. In this study, we used cysteine accessibility to determine whether there is voltage-dependent S4 movement in a mammalian HCN1 channel. Six cysteine mutations (R247C, T249C, I251C, S253C, L254C, and S261C) were used to assess S4 movement of the heterologously expressed HCN1 channel in Xenopus oocytes. We found a state-dependent accessibility for four S4 residues: T249C and S253C from the extracellular solution, and L254C and S261C from the internal solution. We conclude that S4 moves in a voltage-dependent manner in HCN1 channels, similar to its movement in the spHCN channel. This S4 movement suggests that the role of S4 as a voltage sensor is conserved in HCN channels. In addition, to determine the reason for the different cAMP modulation and the different voltage range of activation in spHCN channels compared with HCN1 channels, we constructed a COOH-terminal-deleted spHCN. This channel appeared to be similar to a COOH-terminal-deleted HCN1 channel, suggesting that the main functional differences between spHCN and HCN1 channels are due to differences in their COOH termini or in the interaction between the COOH terminus and the rest of the channel protein in spHCN channels compared with HCN1 channels.  相似文献   

12.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

13.
The properties of single acetylcholine-activated ion channels in developing rat myoblasts and myotubes in tissue culture have been investigated using the gigaohm seal patch clamp technique. Two classes of ACh-activated channels were identified. The major class of channels (accounting for >95% of all channel openings) has a conductance of 35 pS and a mean open time of 15 msec (at room temperature and ?80 mV). The minor class of channels has a larger conductance (55 pS) and a briefer mean open time (2–3 msec). Functional ACh-activated channels are present in undifferentiated mononucleated myoblasts 1–2 days in culture, although the channel density on such cells is low. Over the next week in culture, as the myoblasts fuse to form multinucleate myotubes, there is a marked increase in channel density and an increase in the proportion of large conductance channels. No significant change, however, occurs in channel conductance or open time (within a given class of channels) during this period. At high concentrations of ACh, channels desensitize and channel openings occur in groups, similar to what has been previously described in adult muscle. The rate of channel opening within a group of openings increases with increasing agonist concentration while mean open time is independent of agonist concentration, as expected from simple models of drug action. During a group of openings, the channel is open for half the time (i.e., channel opening rate is equal to channel closing rate) at a concentration of approximately 6 μm ACh.  相似文献   

14.
Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein triggers a noncatalytic inhibitory interaction between the PTK and the channel. These studies suggest that PTKs affects RETalpha channels in two ways: (1) by catalyzing phosphorylation of the channel protein, and (2) by allosterically regulating channel activation. Here, we study the mechanism of noncatalytic inhibition. We find that noncatalytic inhibition follows the same activity dependence pattern as catalytic modulation (phosphorylation): the efficacy and apparent affinity of genistein inhibition are much higher for closed than for fully activated channels. Association rates with the genistein-PTK complex were similar for closed and fully activated channels and independent of genistein concentration. Dissociation rates were 100 times slower for closed channels, which is consistent with a much higher affinity for genistein-PTK. Genistein-PTK affects channel gating, but not single channel conductance or the number of active channels. By analyzing single channel gating during genistein-PTK dissociation, we determined the maximal open probability for normal and genistein-PTK-bound channels. genistein-PTK decreases open probability by increasing the free energy required for opening, making opening dramatically less favorable. Ni(2+), which potentiates RETalpha channel gating, partially relieves genistein inhibition, possibly by disrupting the association between the genistein-PTK and the channel. Studies on chimeric channels containing portions of RETalpha, which exhibits genistein inhibition, and the rat olfactory CNG channel alpha-subunit, which does not, reveals that a domain containing S6 and flanking regions is the crucial for genistein inhibition and may constitute the genistein-PTK binding site. Thus, genistein-PTK stabilizes the closed state of the channel by interacting with portions of the channel that participate in gating.  相似文献   

15.
A number of peptide toxins from venoms of spiders and cone snails are high affinity ligands for voltage-gated calcium channels and are useful tools for studying calcium channel function and structure. Using whole-cell recordings from rat sympathetic ganglion and cerebellar Purkinje neurons, we studied toxins that target neuronal N-type (Ca(V)2.2) and P-type (Ca(V)2.1) calcium channels. We asked whether different toxins targeting the same channels bind to the same or different sites on the channel. Five toxins (omega-conotoxin-GVIA, omega-conotoxin MVIIC, omega-agatoxin-IIIA, omega-grammotoxin-SIA, and omega-agatoxin-IVA) were applied in pairwise combinations to either N- or P-type channels. Differences in the characteristics of inhibition, including voltage dependence, reversal kinetics, and fractional inhibition of current, were used to detect additive or mutually occlusive effects of toxins. Results suggest at least two distinct toxin binding sites on the N-type channel and three on the P-type channel. On N-type channels, results are consistent with blockade of the channel pore by omega-CgTx-GVIA, omega-Aga-IIIA, and omega-CTx-MVIIC, whereas grammotoxin likely binds to a separate region coupled to channel gating. omega-Aga-IIIA produces partial channel block by decreasing single-channel conductance. On P-type channels, omega-CTx-MVIIC and omega-Aga-IIIA both likely bind near the mouth of the pore. omega-Aga-IVA and grammotoxin each bind to distinct regions associated with channel gating that do not overlap with the binding region of pore blockers. For both N- and P-type channels, omega-CTx-MVIIC binding produces complete channel block, but is prevented by previous partial channel block by omega-Aga-IIIA, suggesting that omega-CTx-MVIIC binds closer to the external mouth of the pore than does omega-Aga-IIIA.  相似文献   

16.
We have applied patch-clamp techniques to on-cell and excised-membrane patches from human retinal pigment epithelial cells in tissue culture. Single-channel currents from at least four ion channel types were observed: three or more potassium-selective channels with single-channel slope conductances near 100, 45, and 25 pS as measured in on-cell patches with physiological saline in the pipette, and a relatively nonselective channel with subconductance states, which has a main-state conductance of approximately 300 pS at physiological ion concentrations. The permeability ratios, PK/PNa, measured in excised patches were 21 for the 100-pS channels, 3 for the 25-pS channels, and 0.8 for the 300-pS nonselective channel. The 45-pS channels appeared to be of at least two types, with PK/PNa's of approximately 41 for one type and 3 for the other. The potassium-selective channels were spontaneously active at all potentials examined. The average open time for these channels ranged from a few milliseconds to many tens of milliseconds. No consistent trend relating potassium-selective channel kinetics to membrane potential was apparent, which suggests that channel activity was not regulated by the membrane potential. In contrast to the potassium-selective channels, the activity of the nonselective channel was voltage dependent: the open probability of this channel declined to low values at large positive or negative membrane potentials and was maximal near zero. Single-channel conductances observed at several symmetrical KCl concentrations have been fitted with Michaelis-Menten curves in order to estimate maximum channel conductances and ion-binding constants for the different channel types. The channels we have recorded are probably responsible for the previously observed potassium permeability of the retinal pigment epithelium apical membrane.  相似文献   

17.
Myocardial cells have two types of Ca channels commonly called T-type and L-type. Whole cell Ca channel currents in guinea pig atrial myocytes can be separated and quantitated by analyzing channel closing kinetics after a brief depolarization (tail current analysis). L-type Ca channels deactivate rapidly when the membrane is repolarized and T-type Ca channels deactivate relatively slowly. Ca channel block by the therapeutically useful Ca channel antagonists is voltage dependent, so it is desirable to study block of both channel types over an extended voltage range. Tail current analysis allows this and was used to study block of both types of Ca channels under identical conditions. Amiodarone, bepridil, and cinnarizine block T-type Ca channels more potently than L-type Ca channels when binding equilibrates at normal diastolic potentials (approximately -90 mV). None of these drugs is a selective blocker of T-type Ca channels because block of L-type Ca channels is enhanced when cells are almost completely depolarized. Although weak block of T-type Ca channels by 1,4-dihydropyridines has usually been reported, we found that felodipine blocks these channels with high affinity. When most T-type Ca channels are inactivated, the apparent dissociation constant (KI) is 13 nM. Felodipine also blocks T-type Ca channels in GH3 cells (a cell line derived from rat anterior pituitary), but KI = 700 nM. Thus, T-type Ca channels in different cell types are pharmacologically distinct. Felodipine can block L-type Ca channels in atrial cells more potently than T-type Ca channels, but block of L-type Ca channels is potent only at depolarized potentials; block of both channel types is comparable at normal diastolic membrane potentials. Felodipine and the 1,4-dihydropyridines isradipine and (-)-202-791 are approximately equipotent at blocking T-type Ca channels, but differ substantially in potency for block of L-type Ca channels. Block of T-type Ca channels may account for some of the pharmacological effects of 1,4-dihydropyridines and for the antiarrhythmic activity of amiodarone and bepridil.  相似文献   

18.
J J Galligan  R A North 《Life sciences》1988,43(26):2183-2192
There are many substances contained within enteric nerves which excite or inhibit other nerves when these substances are applied to single neurons. The actions of these substances and of drugs which mimic these actions is to open or close membrane ion channels. The effects on membrane potential are dependent on the nature of the ions which pass through the channel and whether the channel is opened or closed. In the enteric nervous system, drugs can act at one of three broad classes of receptors: [1] those which are part of an ion channel complex and which open either cation channels or chloride channels, both of which result in membrane depolarization [2] those which open potassium channels resulting in hyperpolarization or [3] those which close potassium channels resulting in depolarization. Receptors which open potassium channels are coupled to the channel via a G-protein while receptors which close potassium channels are coupled to the channel, in some cases, via a cyclic AMP-dependent system while in other cases another second messenger system is involved.  相似文献   

19.
Intracellular regions of voltage-gated potassium channels often comprise the largest part of the channel protein, and yet the functional role of these regions is not fully understood. For the Kv2.1 channel, although there are differences in activation kinetics between rat and human channels, there are, for instance, no differences in movement of the S4 region between the two channels, and indeed our mutagenesis studies have identified interacting residues in both the N- and C -terminal intracellular regions that are responsible for these functional effects. Furthermore, using FRET with fluorescent-tagged Kv2.1 channels, we have shown movement of the C-termini relative to the N-termini during activation. Such interactions and movements of the intracellular regions of the channel appear to form part of the channel gating machinery. Heag1 and heag2 channels also display differing activation properties, despite their considerable homology. By a chimeric approach, we have shown that these differences in activation kinetics are determined by multiple interacting regions in the N-terminus and membrane-spanning regions. Furthermore, alanine mutations of many residues in the C-terminal cyclic nucleotide binding domain affect activation kinetics. The data again suggest interacting regions between N- and C- termini that participate in the conformational changes during channel activation. Using a mass-spectrometry approach, we have identified α-tubulin and a heat shock protein as binding to the C-terminus of the heag2 channel, and α-tubulin itself has functional effects on channel activation kinetics. Clearly, the intracellular regions of these ion channels (and most likely many other ion channels too) are important regions in determining channel function. EBSA Satellite Meeting: Ion channels, Leeds, July 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号