首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laccases from different sources catalyse oxidation of various phenolic and aromatic compounds to products that very often are colourful and may be used as dyes, especially in the textile industry. They catalyse not only catabolic processes such as depolymerisation and degradation but can also carry out various dimerization, oligomerization, and polymerization reactions of some hundred aromatic substrates that synthesize new molecules with valuable functions. Because of their versatile biochemical properties, high protein stability, breadth of substrate spectrum, laccases are the key enzymes having applications in biotechnological processes as eco-friendly biocatalyst. This review refers to the natural abilities of laccases to synthesize colour products with respect to the type of the enzymatic reaction, catalyst characterization and possible use of these colour products as dyestuffs.  相似文献   

2.
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are polyphenol oxidases (PPO) that catalyze the oxidation of various substituted phenolic compounds by using molecular oxygen as the electron acceptor. The ability of laccases to act on a wide range of substrates makes them highly useful biocatalysts for various biotechnological applications. To date, laccases have mostly been isolated and characterized from plants and fungi, and only fungal laccases are used currently in biotechnological applications. In contrast, little is known about bacterial laccases, although recent rapid progress in the whole genome analysis suggests that the enzymes are widespread in bacteria. Since bacterial genetic tools and biotechnological processes are well established, so developing bacterial laccases would be significantly important. This review summarizes the distribution of laccases among bacteria, their functions, comparison with fungal laccases and their applications.  相似文献   

3.

Background  

Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in pathogenesis, immunogenesis and morphogenesis of organisms and in the metabolic turnover of complex organic substances. They catalyze the coupling between the four one-electron oxidations of a broad range of substrates with the four-electron reduction of dioxygen to water. These catalytic processes are made possible by the contemporaneous presence of at least four copper ion sites, classified according to their spectroscopic properties: one type 1 (T1) site where the electrons from the reducing substrates are accepted, one type 2 (T2), and a coupled binuclear type 3 pair (T3) which are assembled in a T2/T3 trinuclear cluster where the electrons are transferred to perform the O2 reduction to H2O.  相似文献   

4.
Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.  相似文献   

5.
Industrial and biotechnological applications of laccases: a review   总被引:21,自引:0,他引:21  
Laccases have received much attention from researchers in last decades due to their ability to oxidise both phenolic and non-phenolic lignin related compounds as well as highly recalcitrant environmental pollutants, which makes them very useful for their application to several biotechnological processes. Such applications include the detoxification of industrial effluents, mostly from the paper and pulp, textile and petrochemical industries, use as a tool for medical diagnostics and as a bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases are also used as cleaning agents for certain water purification systems, as catalysts for the manufacture of anti-cancer drugs and even as ingredients in cosmetics. In addition, their capacity to remove xenobiotic substances and produce polymeric products makes them a useful tool for bioremediation purposes. This paper reviews the applications of laccases within different industrial fields as well as their potential extension to the nanobiotechnology area.  相似文献   

6.
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.  相似文献   

7.

Background  

Laccases are multi-copper oxidases that catalyze the one electron oxidation of a broad range of compounds. Laccase substrates include substituted phenols, arylamines and aromatic thiols. Such compounds are activated by the enzyme to the corresponding radicals. Owing to their broad substrate range laccases are considered to be versatile biocatalysts which are capable of oxidizing natural and non-natural industrial compounds, with water as sole by-product.  相似文献   

8.
Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis.  相似文献   

9.
Laccases are blue multicopper oxidases that couple the four-electron reduction of oxygen with the oxidation of a broad range of aromatic substrates. These fungal enzymes can be used for many applications such as bleaching, organic synthesis, bioremediation, and in laundry detergents. Laccases from Pleurotus ostreatus have been successfully heterologously expressed in yeasts. The availability of established recombinant expression systems has allowed the construction of mutated, "better performing" enzymes through molecular evolution techniques. In the present work, random mutagenesis experiments on poxc and poxa1b cDNAs, using error prone PCR (EP-PCR) have been performed. By screening a library of 1100 clones the mutant 1M9B was selected, it shows a single mutation (L112F) leading to an enzyme more active but less stable with respect to the wild-type enzyme (POXA1b) in all the analyzed conditions. This mutant has been used as a template for a second round of EP-PCR. From this second generation library of 1200 clones, three mutants have been selected. Properties of the four mutants, 1M9B screened from the first library, and 1L2B, 1M10B, and 3M7C from the second library, were analyzed. The better performing mutant 3M7C presents, besides L112F, only one substitution (P494T) responsible both for the significantly increased stability and for the exhibited higher activity of this mutant. Molecular dynamics simulations have been performed on three-dimensional models of POXA1b, 1M9B, and 3M7C, and hypotheses on the structure-function relationships of these proteins have been formulated.  相似文献   

10.
赵丹  谷惠琦  崔岱宗  范晓旭  张曦  赵敏 《生态学报》2012,32(13):4062-4070
在凉水国家级自然保护区3种主要林型红松(Pinus koraiensis)、白桦(Betula platyphylla)及云杉(Picea dietrich)林采集林下土壤样品,以铜离子作为筛选剂处理后,结合平板分离法与基于16S rDNA V3区片段的变性梯度凝胶电泳(DenaturingGradient Gel Electrophoresis,DGGE)技术,调查了土壤样品中产类漆酶-多铜氧化酶(laccase-like multicopper oxidase,LMCO)细菌的群落结构。这是研究产类漆酶-多铜氧化酶细菌在环境中存在的种、属及分布的新尝试。平板分离获得10株细菌均为芽孢杆菌属(Bacillus sp.),其中梭状芽孢杆菌(Bacillus fusiformis)未见相关报道。通过DGGE图谱分析可知,产类漆酶-多铜氧化酶细菌在研究地不同林型土壤中的群落结构无明显差异,在红松林土壤中多样性最为丰富。DGGE条带测序结果表明,取样地土壤中产类漆酶细菌主要为罗尔斯顿菌属(Ralstonia sp.)、肠杆菌属(Enterobacter sp.)、芽孢杆菌属和一些未培养细菌。  相似文献   

11.
Laccases are multicopper oxidases that catalyze the oxidation of a wide range of phenols or arylamines, and their use in industrial oxidative processes is increasing. We purified from the white rot fungus Trametes versicolor a laccase that exists as five different isozymes, depending on glycosylation. The 2.4 A resolution structure of the most abundant isozyme of the glycosylated enzyme was solved. The four copper atoms are present, and it is the first crystal structure of a laccase in its active form. The crystallized enzyme binds 2,5-xylidine, which was used as a laccase inducer in the fungus culture. This arylamine is a very weak reducing substrate of the enzyme. The cavity enclosing 2,5-xylidine is rather wide, allowing the accommodation of substrates of various sizes. Several amino acid residues make hydrophobic interactions with the aromatic ring of the ligand. In addition, two charged or polar residues interact with its amino group. The first one is an histidine that also coordinates the copper that functions as the primary electron acceptor. The second is an aspartate conserved among fungal laccases. The purified enzyme can oxidize various hydroxylated compounds of the phenylurea family of herbicides that we synthesized. These phenolic substrates have better affinities at pH 5 than at pH 3, which could be related to the 2,5-xylidine binding by the aspartate. This is the first high-resolution structure of a multicopper oxidase complexed to a reducing substrate. It provides a model for engineering laccases that are either more efficient or with a wider substrate specificity.  相似文献   

12.
Laccases are enzymes of the family multicopper oxidases, being widely used for biotechnological applications (Canas & Camarero, 2010). The enzymes’ catalytic cycle consists of the oxidation of the substrate with the concomitant reduction of molecular oxygen to water. In this process, the substrate is converted to a free radical, that can oxidize larger substrates acting as a mediator or it can undergo polymerization. Substrate binding is not specific, and there is a large diversity of substrates for laccases. Moreover, the binding site shows important differences among diverse species. The goal of the present work is to characterize the laccase binding pocket of different species, in order to establish their common pharmacophoric characteristics. For this purpose, we have carried out docking studies with a subset of substrates, covering the diversity of substrates using the Glide program (Friesner et al., 2004). We have also analyzed the characteristics of the binding site using diverse probes. We further have rationalized the differential values of km found among diverse species for a specific substrate. Finally, special attention has been devoted to the binding of the mediator 2,2′-azido-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), commonly used in industrial processes. Figure 1 shows, ABTS docked onto the fungal laccase, whereas Figure 2 shows ABTS docked onto the bacterial laccase. The analysis of the protein–ligand complex together with the corresponding optimized geometries of the possible substrate species carried out using DFT suggest that the bound species is the protonated form of ABTS as previously suggested (Enguita et al., 2004). Furthermore, the results of this study also suggest that its mechanism of oxidation occurs in a similar way to the rest of substrates/mediators, in contrast to previous suggestions (Fabbrini et al., 2002).   相似文献   

13.
14.
Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real‐time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi‐fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.   相似文献   

15.
Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.  相似文献   

16.

Background  

Laccases are enzymes that couple the oxidation of substrates with the reduction of dioxygen to water. They are the simplest members of the multi-copper oxidases and contain at least two types of copper centres; a mononuclear T1 and a trinuclear that includes two T3 and one T2 copper ions. Substrate oxidation takes place at the mononuclear centre whereas reduction of oxygen to water occurs at the trinuclear centre.  相似文献   

17.
Laccases are oxidoreductases which oxidize a variety of aromatic compounds using oxygen as the electron acceptor and producing water as by-product. The interest for these old enzymes (first described in 19th century) has progressively increased due to their outstanding biotechnological applicability. The presence of redox mediators is required for a number of biotechnological applications, providing the oxidation of complex substrates not oxidized by the enzyme alone. The efficiency of laccase–mediator systems to degrade recalcitrant compounds has been demonstrated, but still the high cost and possible toxicity of artificial mediators hamper their application at the industrial scale. Here, we present a general outlook of how alternative mediators can change this tendency. We focus on phenolic compounds related to lignin polymer that promotes the in vitro transformation of recalcitrant non-phenolic structures by laccase and are seemingly the natural mediators of laccases. The use of eco-friendly mediators easily available from lignocellulose, could contribute to the industrial implementation of laccases and the development of the 21th century biorefineries.  相似文献   

18.
19.
Redox-mediated decolorization of synthetic dyes by fungal laccases   总被引:1,自引:0,他引:1  
Laccases from the lignin-degrading basidiomycetes Trametes versicolor, Polyporus pinisitus and the ascomycete Myceliophthora thermophila were found to decolorize synthetic dyes to different extents. Differences were attributed to the specific catalytic properties of the individual enzymes and to the structure of the dyes. Due to their higher oxidative capacities, the laccases from the two basidiomycetes decolorized dyes more efficiently than that of the ascomycete. The azo dye Direct Red 28, the indigoid Acid Blue 74 and anthraquinonic dyes were directly enzymatically decolorized within 16 h. The addition of 2 mM of the redox-mediator 1-hydroxybenzotriazole further improved and facilitated the decolorization of all nine dyes investigated. Laccases decolorized dyes both individually and in complex mixtures in the presence of bentonite or immobilized in alginate beads. Our data suggest that laccase/mediator systems are effective biocatalysts for the treatment of effluents from textile, dye or printing industries.  相似文献   

20.
漆酶(Laccase,p-diphenol dioxygen oxidoreductases,EC 1.10.3.2)是一类包含三核铜簇位点的多酚氧化还原酶,广泛存在于细菌、真菌、高等植物和昆虫体内。该类酶不仅能够促进生态系统中高分子木质素和腐殖质聚合物的生物分解,还可以催化有机体内单酚和多酚类化合物参与黑色素、木质素、黄酮类和角质层等功能酚聚合物的生物合成。漆酶介导有机物的分解代谢和合成代谢机制有益于生态环境中碳循环和生物形态发生变化。在生物体内,漆酶催化天然酚类单电子氧化形成苯氧活性自由基或醌类中间体,随后这些活性中间体发生自我偶联或交叉偶联反应,生成多种结构复杂的大分子C-C、C-O-C或C-N-C功能聚合产物。因此,通过人工模拟漆酶催化生物体内的绿色合成代谢机理和路径,合理设计和定向改造漆酶在生物体外催化酚类底物偶联形成大分子功能聚合产物的结构和特性,有望为拓展和研发漆酶在绿色合成化学中的多功能应用提供丰富的参考价值和新颖的见解思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号