首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using affinity chromatography methods, we have purified elongation factor Tu (EF-Tu) proteins from a host of archaebacteria covering all known divisions in the archaebacterial tree except halophiles, and from such distantly related eubacteria as Thermotoga maritima and Escherichia coli. Polyclonal antibodies were raised against the Tu proteins of Sulfolobus solfataricus, Thermoproteus tenax, Thermococcus celer, Pyrococcus wosei, Archaeoglobus fulgidus, Methanococcus thermolitotrophicus, Thermoplasma acidophilum, and Thermotoga and used to probe the immunochemical relatedness of elongation factors both within and across kingdom boundaries. A selection of the results, presented here, indicates that (i) every archaebacterial EF-Tu is closer (immunochemically) to every other archaebacterial EF-Tu than to the functionally analogous proteins of eubacteria and eukaryotes, with only one possible exception concerning the recognition of eukaryotic (EF-1 alpha) factors by Thermococcus EF-Tu antibodies, and (ii) within the archaebacteria there appears to be a correlation between EF-Tu immunochemical similarities and the phylogenetic relatedness of the organisms inferred from other (sequence) criteria. On the whole, immunochemical similarity data argue against the proposal that the archaebacterial taxon should be split and redistributed between two superkingdoms.  相似文献   

2.
The elongation factor Tu was isolated from a psychrophilic eubacterial Antarctic Moraxella strain (MoEF-Tu) and its molecular and functional properties were determined. It catalyzed the synthesis of poly(Phe) and bound specifically guanine nucleotides with an affinity for GDP about 12-fold higher than that for GTP. The affinity toward guanine nucleotides was lower than that of other eubacterial EF-Tu. The intrinsic GTPase activity of MoEF-Tu was hardly detectable but was accelerated by 2 orders of magnitude in the presence of the antibiotic kirromycin (GTPase(k)). Such a property resembled Escherichia coli EF-Tu (EcEF-Tu) even though the affinity of MoEF-Tu for the antibiotic was lower. MoEF-Tu showed a thermophilicity higher than that of EcEF-Tu; its temperature for half-denaturation was 44 degrees C. The MoEF-Tu encoding gene corresponding to E. coli tufA was cloned and sequenced. The translated protein had a calculated molecular weight of 43 288 and contained the GTP-binding sequence motifs. Concerning its primary structure, MoEF-Tu showed sequence identity with E. coli and Thermus thermophilus EF-Tu equal to 84% and 74%, respectively, while the identity with EF-1 alpha from the archaeon Sulfolobus solfataricus was equal to 32%.  相似文献   

3.
4.
The elongation factor 1 alpha (aEF-1 alpha) was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus by chromatographic procedures utilising DEAE-Sepharose, hydroxyapatite and FPLC on Mono S. The purified protein binds [3H]GDP at a 1:1 molar ratio and it is essential for poly(Phe) synthesis in vitro; it also binds GTP but not ATP. These findings indicate that aEF-1 alpha is the counterpart of the eubacterial elongation factor Tu (EF-Tu). Purified aEF-1 alpha is a monomeric protein with a relative molecular mass of 49,000 as determined by SDS/PAGE and by gel filtration on Sephadex G-100; its isoelectric point is 9.1. The overall amino acid composition did not reveal significant differences when compared with the amino acid composition of eubacterial EF-Tu from either Escherichia coli or Thermus thermophilus, of eukaryotic EF-1 alpha from Artemia salina or of archaebacterial EF-1 alpha from Methanococcus vannielii. The close similarities between the average hydrophobicity and the numbers of hydrogen-bond-forming or non-helix-forming residues suggest that common structural features exist among the factors compared. aEF-1 alpha shows remarkable thermophilic properties, as demonstrated by the rate of [3H]GDP binding which increases with temperature, reaching a maximum at 95 degrees C; it is also quite heat-resistant, since after a 6-h exposure at 60 degrees C and 87 degrees C the residual [3H]GDP-binding ability was still 90% and 54% of the control, respectively. The affinity of aEF-1 alpha for GDP and GTP was also evaluated. At 80 degrees C Ka' for GDP was about 30-fold higher than Ka' for GTP; at the same temperature Kd' for GDP was 1.7 microM and Kd' for GTP was 50 microM; these values were 300-fold and 100-fold higher, respectively, than those reported for E. coli EF-Tu at 30 degrees C; compared to the values at 0 degree C of EF-Tu from E. coli and T. thermophilus or EF-1 alpha from A. salina, pig liver and calf brain, smaller differences were observed with eukaryotic factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We show that shared peptides of proteins that are encoded in different species are suitable for cross-species relative protein quantification. A 14N-containing proteome from the thermoacidophilic archaeon Sulfolobus tokodaii was mixed with a 15N-labeled proteome from Sulfolobus solfataricus. Using three shared peptides per protein, the relative abundance of six orthologous proteins was calculated. Observed standard deviations were approximately 10%, indicating that the trypsin accessibility to cleavage sites was not altered in the orthologs. The abundance ratios of the and subunits of the Thermosome were 0.64 and 1.24 in Sulfolobus tokodaii compared to Sulfolobus solfataricus, suggesting a different stoichiometry of the complex in both species. In addition, an in silico study was performed on the occurrence of shared peptides. Inter- and intra-species peptide redundancy was investigated in the model organisms Homo sapiens, Mus musculus, Escherichia coli K12, Escherichia coli O157:H7, S. solfataricus, and S. tokodaii. M. musculus and H. sapiens share 30-50% of all peptides (6-15 residues). Moreover, approximately one-third of all proteins shared > or = 40% of their peptides with at least one other protein in the related species, thus offering strong potential for cross-species relative protein quantification. Conversely, approximately 40% of all peptides (6-15 residues) encoded in H. sapiens are encoded multiple times and therefore complicate identification and quantification.  相似文献   

6.
A recombinant chimeric elongation factor containing the region of EF-1 alpha from Sulfolobus solfataricus harboring the site for GDP and GTP binding and GTP hydrolysis (SsG) and domains M and C of Escherichia coli EF-Tu (EcMC) was studied. SsG-EcMC did not sustain poly(Phe) synthesis in either S. solfataricus or E. coli assay system. This was probably due to the inability of the chimera to interact with aa-tRNA. The three-dimensional modeling of SsG-EcMC indicated only small structural differences compared to the Thermus aquaticus EF-Tu in the ternary complex with aa-tRNA and GppNHp, which did not account for the observed inability to interact with aa-tRNA. The addition of the nucleotide exchange factor SsEF-1 beta was not required for poly(Phe) synthesis since the chimera was already able to exchange [(3)H]GDP for GTP at very high rate even at 0 degrees C. Compared to that of SsEF-1 alpha, the affinity of the chimera for guanine nucleotides was increased and the k(cat) of the intrinsic GTPase was 2-fold higher. The heat stability of SsG-EcMC was 3 and 13 degrees C lower than that displayed by SsG and SsEF-1alpha, respectively, but 30 degrees C higher than that of EcEF-Tu. This pattern remained almost the same if the melting curves of the proteins being investigated were considered instead. The chimeric elongation factor was more thermophilic than SsG and SsEF-1 alpha up to 70 degrees C; at higher temperatures, inactivation occurred.  相似文献   

7.
Ribosomal genes are strongly regulated dependent on growth phase in all organisms, but this regulation is poorly understood in Archaea. Moreover, very little is known about growth phase-dependent gene regulation in Archaea. SSV1-based lacS reporter gene constructs containing the Sulfolobus 16S/23S rRNA gene core promoter, the TF55α core promoter, or the native lacS promoter were tested in Sulfolobus solfataricus cells lacking the lacS gene. The 42-bp 16S/23S rRNA gene and 39-bp TF55α core promoters are sufficient for gene expression in S. solfataricus. However, only gene expression driven by the 16S/23S rRNA gene core promoter is dependent on the culture growth phase. This is the smallest known regulated promoter in Sulfolobus. To our knowledge, this is the first study to show growth phase-dependent rRNA gene regulation in Archaea.  相似文献   

8.
The elongation factors (EF-Tu/EF-1 alpha) are universal proteins, involved in protein biosynthesis. A detailed characterization of the stability against temperature of SsEF-1 alpha, a three-domain protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus is presented. Thermal denaturation of both the GDP-bound (SsEF-1 alpha*.GDP) and the ligand-free (nfSsEF-1 alpha) forms was investigated by means of circular dichroism and fluorescence measurements, over the 4.0-7.5 pH interval. Data indicate that the unfolding process is cooperative with no intermediate species and that the few inter-domain contacts identified in the crystal structure of SsEF-1 alpha play a role also at high temperatures. Finally, it is shown that the enzyme exhibits two different interchangeable thermally denatured states, depending on pH.  相似文献   

9.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

10.
Sulfolobus solfataricus has developed into an important model organism for molecular and biochemical studies of hyperthermophilic archaea. Although a number of in vitro systems have been established for the organism, efficient tools for genetic manipulations have not yet been available for any hyperthermophile. In this work, we have developed a stable and selectable shuttle vector based on the virus SSV1 of Sulfolobus shibatae. We have introduced pUC18 for propagation in Escherichia coli and the genes pyrEF coding for orotidine-5'-monophosphate pyrophosphorylase and orotidine-5'-monophosphate decarboxylase of Sulfolobus solfataricus as selectable marker to complement pyrimidine auxotrophic mutants. Furthermore, the beta-galactosidase gene (lacS) was introduced into this vector as a reporter under the control of the strong and heat-inducible promoter of the Sulfolobus chaperonin (thermosome). After transformation of a S. solfataricus pyrEF/lacS double mutant, the vector was found to reside as a single-copy vector, stably integrated into the host chromosome via the site-specific recombination system of SSV1. Specific beta-galactosidase activities in transformants were found to be fourfold higher than in wild-type S. solfataricus cells, and increased to more than 10-fold after heat shock. Greatly increased levels of lacS mRNA were detected in Northern analyses, demonstrating that this reporter gene system is suitable for the study of regulated promoters in Sulfolobus and that the vector can also be used for the high-level expression of genes from hyperthermophilic archaea.  相似文献   

11.
We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5) and a temperature of 75-80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism.  相似文献   

12.
We have determined the nucleotide sequences of the 5 S rRNAs of three thermophilic bacteria: the archaebacterium Sulfolobus solfataricus, also named Caldariella acidophila, and the eubacteria Bacillus acidocaldarius and Thermus aquaticus. A 5 S RNA sequence for the latter species had already been published, but it looked suspect on the basis of its alignment with other 5 S RNA sequences and its base-pairing pattern. The corrected sequence aligns much better and fits in the universal five helix secondary structure model, as do the sequences for the two other examined species. The sequence found for Sulfolobus solfataricus is identical to that determined by others for Sulfolobus acidocaldarius. The secondary structure of its 5 S RNA shows a number of exceptional features which distinguish it not only from eubacterial and eukaryotic 5 S RNAs, but also from the limited number of archaebacterial 5 S RNA structures hitherto published. The free energy change of secondary structure formation is large in the three examined 5 S RNAs.  相似文献   

13.
14.
The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures.  相似文献   

15.
A mutated version of the hygromycin B phosphotransferase (hph(mut)) gene from Escherichia coli, isolated by directed evolution at 75 degrees C in transformants of a thermophilic strain of Sulfolobus solfataricus, was characterized with respect to its genetic stability in both the original mesophilic and the new thermophilic hosts. This gene was demonstrated to be able to express the hygromycin B resistance phenotype and to be steadily maintained and propagated also in other, more thermophilic strains of S. solfataricus, i.e., up to 82 degrees C. Furthermore, it may be transferred to S. solfataricus cells by cotransformation with pKMSD48, another extrachromosomal element derived from the virus SSV1 of Sulfolobus shibatae, without any loss of stability and without affecting the replication and infectivity of this viral DNA. The hph(mut) and the wild-type gene products were expressed at higher levels in E. coli and purified by specific affinity chromatography on immobilized hygromycin B. Comparative characterization revealed that the mutant enzyme had acquired significant thermoresistance and displayed higher thermal activity with augmented catalytic efficiency.  相似文献   

16.
Sulfolobus solfataricus is an aerobic crenarchaeon that thrives in acidic volcanic pools. In this study, we have purified and characterized a thermostable alpha-galactosidase from cell extracts of S. solfataricus P2 grown on the trisaccharide raffinose. The enzyme, designated GalS, is highly specific for alpha-linked galactosides, which are optimally hydrolyzed at pH 5 and 90 degrees C. The protein consists of 74.7-kDa subunits and has been identified as the gene product of open reading frame Sso3127. Its primary sequence is most related to plant enzymes of glycoside hydrolase family 36, which are involved in the synthesis and degradation of raffinose and stachyose. Both the galS gene from S. solfataricus P2 and an orthologous gene from Sulfolobus tokodaii have been cloned and functionally expressed in Escherichia coli, and their activity was confirmed. At present, these Sulfolobus enzymes not only constitute a distinct type of thermostable alpha-galactosidases within glycoside hydrolase clan D but also represent the first members from the Archaea.  相似文献   

17.
Abstract An open reading frame ( pelA ) specifying a homolog of pelota and DOM34, proteins required for meiotic cell division in Drosophila melanogaster and Saccharomyces cerevisiae , respectively, has been cloned, sequenced and identified from the archaebacterium Sulfolobus solfataricus . The S. solfataricus PelA protein is about 20% identical with pelota, DOM34 and the hypothetical protein R74.6 of Caenorhabditis elegans . The presence of a pelota homolog in archaebacteria implies that the meiotic functions of the eukaryotic protein were co-opted from, or added to, other functions existing before the emergence of eukaryotes. The nuclear localization signal and negatively charged carboxy-terminus characteristic of eukaryotic pelota-like proteins are absent from the S. solfataricus homolog, and hence may be indicative of the acquired eukaryotic function(s).  相似文献   

18.
The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S.solfataricus endonuclease at 3.1 angstroms resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.  相似文献   

19.
Mammalian metallocarboxypeptidases play key roles in major biological processes, such as digestive-protein degradation and specific proteolytic processing. A Sulfolobus solfataricus gene (cpsA) encoding a recently described zinc carboxypeptidase with an unusually broad substrate specificity was cloned, sequenced, and expressed in Escherichia coli. Despite the lack of overall sequence homology with known carboxypeptidases, seven homology blocks, including the Zn-coordinating and catalytic residues, were identified by multiple alignment with carboxypeptidases A, B, and T. S. solfataricus carboxypeptidase expressed in E. coli was found to be enzymatically active, and both its substrate specificity and thermostability were comparable to those of the purified S. solfataricus enzyme.  相似文献   

20.
Short regularly spaced repeats (SRSRs) occur in multiple large clusters in archaeal chromosomes and as smaller clusters in some archaeal conjugative plasmids and bacterial chromosomes. The sequence, size, and spacing of the repeats are generally constant within a cluster but vary between clusters. For the crenarchaeon Sulfolobus solfataricus P2, the repeats in the genome fall mainly into two closely related sequence families that are arranged in seven clusters containing a total of 441 repeats which constitute ca. 1% of the genome. The Sulfolobus conjugative plasmid pNOB8 contains a small cluster of six repeats that are identical in sequence to one of the repeat variants in the S. solfataricus chromosome. Repeats from the pNOB8 cluster were amplified and tested for protein binding with cell extracts from S. solfataricus. A 17.5-kDa SRSR-binding protein was purified from the cell extracts and sequenced. The protein is N terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure at the center of each DNA repeat and thereby produces a binding site for another protein, possibly a more conserved one, in a process that may be essential for higher-order stucturing of the SRSR clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号