首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ganglioside composition of membranes enriched in nicotinic acetylcholine receptor (AChR) from the electric raysDiscopyge tschudii andTorpedo marmorata has been determined, and compared to that of total electric organ. A ganglioside having the chromatographic mobility of GM2 constitutes the major ganglioside (60%) in totalD. tschudii electric organ, followed by a component with the mobility of GD3 (10%), and a component running just below GD1a (about 12%). Minor constituents running as GM3 (2%) and as polysialogangliosides (comprising 8–15%) were also observed. Purified native membranes ofD. tschudii andT. marmorata displayed a similar profile, except that they were richer in a GM1-like component, and the proportion of GM2-like gangliosides was lower than that in total electric organ. Using a125I-cholera toxin overlay assay on neuraminidase-treated high-performance thin layer chromatograms, the presence of GM1, GD1a and trace amounts of GD1b and GT1 (or GQ) were detected inD. Tschudii total membranes. Immunocytochemical trechniques showed the co-localization of gangliosides GQ1c/GT1c/GP1c, recognized by the monoclonal antibody Q211, and the AChR at the ventral, innervated face of the electrocyte.  相似文献   

2.
Summary Synaptogenesis has been studied in the electric organ of embryonic Torpedo marmorata by use of two antisera directed against components of synaptic vesicles (anti-SV) and presynaptic plasma membranes (ap-anti-TSM), respectively. The anti-SV serum was previously shown to recognize a proteoglycan specific for synaptic vesicles. The ap-anti-TSM serum was raised to plasma membranes of synaptosomes derived from the electromotor nerve terminals and affinity-purified on electric-organ gangliosides. The vesicular antigen was first detectable at the 81-mm stage of development, which is 1–2 weeks earlier than the formation of morphologically mature presynaptic terminals, but is coincident with a rise in choline acetyltransferase levels and the ability of the electric organ to generate discharges. The gangliosidic antigen recognized by the ap-anti-TSM was first detectable on the ventral electrocyte surface at the 93-mm stage of development. This indicates that specific carbohydrate epitopes, not present on the growth cones, are expressed during maturation of the nerve terminal. The nerve terminal components recognized by these sera arose pari passu with neurite coverage of the ventral surface of the electrocyte, reaching a maximum in the adult. In contrast, postsynaptic aggregates of acetylcholine receptor, rendered visible with rhodamine-labeled -bungarotoxin, arose previous to the presynaptic antigens, reaching a maximum surface density at 110 mm and then declining in the adult.  相似文献   

3.
Summary A proteoglycan-specific antiserum has been used to monitor the effects of denervation in the electric organ of Torpedo marmorata. The antiserum was produced by injecting a highly purified synaptic vesicle fraction prepared from the electric organs of Torpedo marmorata. Following absorption the serum appears to be specific towards synaptic vesicles. The ultrastructural localization of the antigen determined by immuno-electron microscopy confirmed the specificity of the antiserum and showed that it did not crossreact with the proteoglycans of the basal lamina. The rate of disappearance of the vesicle proteoglycans following denervation was evaluated by means of the antiserum and was compared to the rate of disappearance of other vesicular and nerve terminal-associated markers. The results suggest that degeneration affects the vesicular constituents at varying rates resulting in a progressive disappearance of the entire functional capacity of the synaptic vesicles.  相似文献   

4.
Summary The electric organs of embryonic Torpedo marmorala have been reacted with three cationic stains to evaluate the appearance and distribution of anionic sites. Ruthenium red, alcian blue and lysozyme were used at different pHs and found to react in a time-related manner to anionic components within the interelectrocyte space. The basal lamina covering the ventral electrocyte surface possesses the greatest number of anionic sites whereas growth cone, presynaptic terminal and glial membranes displayed almost no staining. Since this lamina serves as the exclusive substrate for ingrowing neuntes during synaptogenesis, the results are consistent with the idea that charge distribution on the membrane surface may provide a necessary cue for neurite motility, extension and eventual synaptogenesis.  相似文献   

5.
Summary Semiquantitative immunohistochemical methods were used to demonstrate that at least some of the glycosaminoglycan contained within cholinergic synaptic vesicles is recycled during successive electrical stimulations of the electric organ of Torpedo marmorata.  相似文献   

6.
The synaptotagmin family has been implicated in calcium-dependent neurotransmitter release, although Synaptotagmin 1 is the only isoform demonstrated to control synaptic vesicle fusion. Here, we report the characterization of the six remaining synaptotagmin isoforms encoded in the Drosophila genome, including homologues of mammalian Synaptotagmins 4, 7, 12, and 14. Like Synaptotagmin 1, Synaptotagmin 4 is ubiquitously present at synapses, but localizes to the postsynaptic compartment. The remaining isoforms were not found at synapses (Synaptotagmin 7), expressed at very low levels (Synaptotagmins 12 and 14), or in subsets of putative neurosecretory cells (Synaptotagmins alpha and beta). Consistent with their distinct localizations, overexpression of Synaptotagmin 4 or 7 cannot functionally substitute for the loss of Synaptotagmin 1 in synaptic transmission. Our results indicate that synaptotagmins are differentially distributed to unique subcellular compartments. In addition, the identification of a postsynaptic synaptotagmin suggests calcium-dependent membrane-trafficking functions on both sides of the synapse.  相似文献   

7.
8.
The lamellar membrane stacks of Ectothiorhodospira mobilis were isolated and purified by a combination of lysozyme and osmotic shock treatment, followed by differential and density gradient centrifugation. Preparations of lamellar membranes were enriched at least 2.4-fold in the ratio of bacteriochlorophyll a to protein.Thin-sectioning, negative staining, platinumcarbon shadowing and freeze-etching were used to study the architecture of the membrane units. Both platinum-carbon shadowing and freeze-etching showed the outer surfaces of the isolated lamellar membrane stacks to be relatively smooth. Particles averaging 7 nm in diameter were seen on several faces following freeze-ctching.Non-polar amino acids amounted to 60% of the total amino acid composition. Lipids constituted 32% of the membrane dry weight. Phosphatidyl ethanolamine and diphosphatidyl glycerol were the major phospholipids. Fatty acids of 10–15 carbons represented a small fraction of both membrane and whole cell fatty acids. Monoenes constituted 36% of the total membrane fatty acids and 38.4% of the total whole cell fatty acids. The major fatty acids of both whole cells and purified membranes were C16:0, C18:1 and cyclopropane C19:0.  相似文献   

9.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

10.
Hocking  T. J.  Clapham  Jennifer  Cattell  K. J. 《Planta》1978,138(3):303-304
A centrifugation binding assay has been used to demonstrate the binding of [3H] (±) abscisic acid to membrane-rich fractions prepared from leaves of Vicia faba L. Kinetic analysis of this binding shows evidence of saturation of binding sites with increasing concentration of ligand. Scatchard analysis of these data yields a biphasic plot possibly indicating the presence of two types of binding sites. The dissocation constant for the high affinity site has been calculated to be 3.5×10-8 mol 1-1.  相似文献   

11.
Summary Pure cholinergic synaptosomes isolated from the electric organ ofTorpedo marmorata were stimulated by calcium ionophore A-23187. The effect of time course of stimulation on the changes in intramembrane particles (IMPs) on presynaptic membranes was studied by quickfreezing and aldehyde-fixation freeze-fracture. We showed that the decrease of small-particle density at the P-face and the increase of large-particle density at the E-face was maximum after 30 sec of A-23187 stimulation. Later, the density of synaptic vesicles decreased. We suggest that the redistribution of IMPs on the presynaptic membrane and acetylcholine (ACh) release from pure cholinergic synaptosomes have a similar time course when triggered by A-23187  相似文献   

12.
Summary A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptorrich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electronmicroscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.Abbreviations ACHR nicotinic acetylcholine receptor - ACHE acetylcholinesterase - BSA bovine serum albumin - EMPG extracellular matrix proteoglycan fraction - FITC fluorescein isothiocyanate - FN fibronectin - LN laminin - TBS Tris-HCl-buffered saline - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

13.
Summary Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.  相似文献   

14.
Pollen from Collomia grandiflora Dougl. ex Lindl., Phoenix dactylifera L. and Zea mays L. was examined by freeze-fracture electron microscopy. Particular attention was paid to the organization of the cell membranes in the naturally dehydrated, as compared to the fully hydrated, state. All membranes examined had a normal bilayer organization similar to that seen in the hydrated cells of these and other plants. This organization of dry pollen membranes is discussed as it relates to physiological studies (e.g., leakage of ions during hydration), and to biophysical properties of biological and model membranes under various conditions of hydration and dehydration.Abbreviations EF, PF exoplasmic and protoplasmic fracture, respectively - HII hexagonal II - IMPs intramembranous particles  相似文献   

15.
Summary The homogenate from unfertilized eggs, gastrulae, neurulae and hatched embryos ofXenopus laevis was fractionated by differential centrifugation and subsequent repeated centrifugation on discontinuous sucrose gradients. A high archencephalic-neural inducing activity was found in RNP particles, which were released from the high-speed (microsomal) sediment by treatment with EDTA, and in a fraction of heterogeneous small vesicles. The highest archencephalic inducing activity was observed in RNP particles from unfertilized eggs and from gastrulae. RNP particles isolated from hatched embryos had a lower inducing activity. The neuralizing factor can be extracted from the small vesicles with pyrophosphate buffer at pH 8.6, but it is not solubilized with a non-ionic detergent (Triton X 100). The high-speed supernatant from the gastrula homogenate contains soluble neuralizing factor, whereas the supernatant from egg homogenate has a low inducing activity. The plasma membrane fraction (isolated from gastrulae) also has only a low inducing activity. The possible significance of the subcellular distribution of neuralizing factors for the transmission of neuralizing inducer from the mesoderm to competent gastrula ectoderm and the processing of signals which are generated on the plasma membrane of induced cells is discussed.  相似文献   

16.
Summary The morphology of the oval nucleus of neonatal Torpedo marmorata is described at the light and electron microscopic level of examination. The nucleus is unique relative to other central electromotor centers of electric fish so far described being bilaterally symmetrical, composed of two nerve cell types, and possessing no gap junctions between neurons and their processes. This particular structural plan presents difficulties in accounting for presumed synchronous discharge since it has been strongly argued that electrotonic coupling by means of gap junctions is the primary process by which synchronization is accomplished. Close membrane apposition and dendritic bundling, common features within the nucleus, are discussed as possible alternative structural correlates.  相似文献   

17.
Summary Monoclonal antibodies (MABs) have been raised against acidic glycolipids extracted from the electric organ of Torpedo marmorata. One of these, designated L9, appears to recognize acidic glycolipids in adult T. marmorata electric organ, electromotor nerves and brain, adult rat sciatic nerve, and in embryonic and neonatal rat brain, starting at embryonic day (ED) 15 and disappearing by the 20th day of post-natal life. The epitope is present in growth cones isolated from 4-day-old rats; its proportion relative to total gangliosides is, however, no higher than that found in whole neonatal brain membranes. Desialidation of the acidic glycolipid fraction modifies neither the immunoreactivity nor the RF value following thin-layer chromatography (TLC) of the antigen; it is concluded that the antigen is not a ganglioside. The MAB, HNK-1, recognizes the L9 antigen. Both HNK-1 and L9 recognize a sulphoglycolipid of the same RF in TLC. The function of the L9 antigen is not known but its evolutionary conservation, presence in growth cones and its developmental regulation in the mammalian central nervous system indicate that it plays an important role in nervous system maturation.  相似文献   

18.
When cell membranes of Lentinus edodes mycelium were rapidly frozen at either 50 or 160°C/min, viability was lost and this correlated with rupture of the plasmalemma and residual membrane material and with alterations in the organelles. Although with slow cooling (1°C/min) 80% of the samples recovered viability, some cells still showed similar changes to those cooled rapidly, indicating that individual cells of the mycelium do not respond in the same way.  相似文献   

19.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   

20.
The aim of this study was to elucidate whether sex or pregnancy state might affect the content and/or pattern of gangliosides from the forebrain, cerebellum and brain stem of rats. Adult male, mother (1-day after offspring) and nonpregnant rats of similar age were analyzed. Non-significant differences in ganglioside concentrations and patterns were found for the respective neural area of adult male and female rats except for a decrease in cerebellum and brain stem content from mothers and 12.0 months-old males, respectively. Thus, it seems that neither sex nor pregnancy hormones affect these parameters. By contrast, significant differences were found for pattern and ganglioside contents between adult (male and female) rats and newborns (1 day-old). Newborns showed a significant decrease in their forebrain (2.5-fold), cerebellum (2.0-fold) and brain stem (2.0-fold) ganglioside content when compared with adult (male and female) rats. Significant increases (p<0.001) were found in the phospholipid and cholesterol contents in the different brain areas in mothers versus their newborns. The phospholipid pattern also showed significant changes in all brain areas, with an increase (p<0.001) in phosphatidylethanolamine percentage in adult animals, among the main variations. An explanation for these facts is suggested.Abbreviations NeuAc N-acetylneuraminic acid - TLC thin layer chromatography - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - PI phosphatidylinositol - PA phosphatidic acid - SM sphingomyelin - PG phosphatidylglycerol Special issue dedicated to Dr. Santiago Grisolía.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号