首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.  相似文献   

2.
Germ-free mice were orally inoculated with human intestinal 7alpha-dehydroxylating bacterial strains to evaluate their ability to transform bile acids in vivo. Three weeks after inoculation of the bacteria, cecal bile acids were examined. Among free-form bile acids, only beta-muricholic acid was detected in the cecal contents of gnotobiotic mice associated with Bacteroides distasonis strain K-5. No secondary bile acid was observed in the cecal contents of any of the gnotobiotic mice associated with 7alpha-dehydroxylating bacteria, Clostridium species strain TO-931 or Eubacterium species strain 36S.  相似文献   

3.
The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.  相似文献   

4.
乳杆菌耐胆汁、降解结合胆盐和同化胆固醇能力的研究   总被引:7,自引:0,他引:7  
对8株植物乳杆菌的胆汁耐受力、降解结合胆盐能力以及同化胆固醇能力进行了研究。不同的菌株在添加了牛胆汁的MRS中生长速度具有明显差异,同化胆固醇能力也明显不同,而降解结合胆盐的能力没有明显区别。分析发现,菌株的胆汁耐受力和降解结合胆盐能力,胆汁耐受力和同化胆固醇能力,以及降解结合胆盐能力和同化胆固醇能力之间都没有明显的相关性。  相似文献   

5.
Lactococcus lactis subsp. lactis has been isolated from the intestines of marine fish and is a candidate probiotic for aquaculture. In order to use the bacterium as a probiotic, properties such as bile tolerance need to be assessed. Here, we compared bile tolerance in L. lactis strains derived from different sources. Three L. lactis subsp. lactis strains from marine fish (MFL), freshwater fish (FFL), and cheese starter (CSL) were used along with an Lactococcus lactis subsp. cremoris strain from cheese starter (CSC). The four strains were grown under various culture conditions: deMan-Rogosa-Sharpe (MRS) broth containing bile salts/acids, MRS agar containing oxgall, and phosphate-buffered saline (PBS) containing fish bile. Survival/growth of the strains in the presence of sodium cholate and sodium deoxycholate varied in the order MFL, CSL > CSC > FFL; in the presence of sodium taurocholate, the order was MFL > CSL > CSC > FFL. In liquid media containing various concentrations of oxgall, survival of the strains was observed in the order MFL > CSL > FFL and CSC. The survival of MFL was not affected by bile collected from the goldfish (Carassius auratus subsp. auratus) or the puffer fish (Takifugu niphobles), although the other strains showed significant inhibition of growth. It is a novel and beneficial finding that MFL has the highest resistance to bile acid.  相似文献   

6.
Transformation of bile acids by Clostridium perfringens.   总被引:4,自引:4,他引:0       下载免费PDF全文
S Hirano  N Masuda  H Oda    H Mukai 《Applied microbiology》1981,42(3):394-399
Thirty-five strains of Clostridium perfringens were examined for their ability to transform bile acids, both in growing cultures and by washed whole cells. All of the strains oxidized the 3 alpha-hydroxy group to an oxo group, and all except three converted the same alpha-hydroxy group into a beta-configuration. The oxidative 3 alpha-dehydrogenation was barely detectable under anaerobic cultural conditions but was clearly demonstrated in an aerated system using washed whole cells, with a pH optimum between 7.0 and 9.0. The epimerizing reaction amounting to 10 to 20% conversion was observed in anaerobic cultures and also with resting cells, irrespective of oxygen supply. Both reactions were carried out with seven conventional 3 alpha-hydroxy bile acids, thus producing a series of 3-oxo and 3 beta-hydroxy derivatives that could be examined for gas-liquid chromatographic and mass spectrometric behavior. No evidence for the occurrence of 7 alpha- and 12 alpha-hydroxysteroid dehydrogenase activities among the test strains was found. A highly potent deconjugating hydrolase was elaborated by all of the strains.  相似文献   

7.
Thirty-five strains of Clostridium perfringens were examined for their ability to transform bile acids, both in growing cultures and by washed whole cells. All of the strains oxidized the 3 alpha-hydroxy group to an oxo group, and all except three converted the same alpha-hydroxy group into a beta-configuration. The oxidative 3 alpha-dehydrogenation was barely detectable under anaerobic cultural conditions but was clearly demonstrated in an aerated system using washed whole cells, with a pH optimum between 7.0 and 9.0. The epimerizing reaction amounting to 10 to 20% conversion was observed in anaerobic cultures and also with resting cells, irrespective of oxygen supply. Both reactions were carried out with seven conventional 3 alpha-hydroxy bile acids, thus producing a series of 3-oxo and 3 beta-hydroxy derivatives that could be examined for gas-liquid chromatographic and mass spectrometric behavior. No evidence for the occurrence of 7 alpha- and 12 alpha-hydroxysteroid dehydrogenase activities among the test strains was found. A highly potent deconjugating hydrolase was elaborated by all of the strains.  相似文献   

8.
Pure performylated bile acids are obtained in quantitative yield by anew formylation procedure. The procedure involves heating the bile acids in 90% formic acid containing catalytic amount of perchloric acid and then adding acetic anhydride slowly until effervescence occurs. Pure performylated bile acids are then isolated simply by diluting the reaction mixture with water. Contrary to what was believed by past investigations, the formyl groups on these compounds are quite stable to various reaction conditions. The stability and ready availability of these compounds make them more suitable candidates than their counterpart—bile acid acetates for use as starting material in various synthetic schemes, such as C-24 labeled bile acids, etc. The partial deformylation of these formates can be effected by using methanolic ammonia, sodium methoxide in methanol, or sodium hydroxide in aqueous acetone. The resulting 3-hydroxy formyl bile acids are obtained in high yield and are the best starting materials for the synthesis of bile acids with specific modification at 3-hydroxyl group, such as the synthesis of bile acid 3-monosulfates and 3-monoglucuronides.  相似文献   

9.
Published data on the mutagenicity of 3 bile acids in the bacterial fluctuation test are conflicting. Eleven 5 beta-cholanoic acids including 2 of the bile acids were assayed for mutagenicity in Salmonella typhimurium TA98 and TA100 in the fluctuation tests. In any of these bile acids at the doses tested, there were no dose-related statistically significant increases in mutagenicity compared with appropriate controls. Similarly, none of these compounds showed positive mutagenicity in both strains in the standard Ames test either with or without hepatic metabolic activation. Our results support the claim that 3 bile acids are not mutagenic, and indicate that the initiation activity of 5 beta-cholanoic acids is not demonstrable with a short-term assay using Salmonella strains.  相似文献   

10.
We isolated two strains of an unnamed Fusobacterium species from human intestinal microflora, which stereospecifically transformed bile acid 3-sulfates into C-3-unsubstituted, ring A-unsaturated bile acids. Both 3 alpha- and 3 beta-sulfates of 5 beta-bile acids were metabolized to delta 3-5 beta-cholenoic acids; 3 beta-sulfates of 5 alpha-bile acids were converted into a mixture of delta 2-5 alpha-bile acids and 3 alpha-hydroxy-5 alpha-bile acids, whereas 3 alpha-sulfates of 5 alpha-bile acids were left intact. Unsulfated bile acids were not transformed into unsaturated derivatives. These strains differ from previously isolated intestinal bacteria, which desulfated bile acid sulfates without further transformation.  相似文献   

11.
Eubacterium sp. strain VPI 12708 is a human intestinal bacterium which contains an inducible bile acid 7-dehydroxylase. Two-dimensional polyacrylamide gel electrophoresis showed that at least four new polypeptides were synthesized after exposure of growing cells to sodium cholate. One of these, of molecular weight 27,000 (PP-27), was implicated in 7-dehydroxylase catalysis. PP-27 was purified to greater than 95% homogeneity by DEAE-cellulose chromatography, high-pressure liquid chromatographic gel filtration, high-pressure liquid chromatography-DEAE chromatography, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 33 amino acid residues of the N terminus of PP-27 were determined with a gas-phase sequencer, and a corresponding mixed oligonucleotide (17-mer) was synthesized. Southern blot analysis of EcoRI total digests of chromosomal DNA showed a 2.2-kilobase fragment which hybridized to the 32P-labeled 17-mer. This fragment was enriched for by size fractionation of an EcoRI total digest of genomic DNA, ligated into the bacterial plasmid pUC8, and used to transform Escherichia coli HB101. Transformants containing the putative 7-dehydroxylase gene were detected with the 32P-labeled 17-mer by colony hybridization techniques. The insert was 2.2 kilobases in length and contained the first 290 bases of the PP-27 gene. Preliminary nucleic acid sequence data correlate with the amino acid sequence. The entire gene was cloned on a 1,150-base-pair TaqI fragment. Western blot analysis of E. coli strains containing these plasmids indicated that PP-27 is expressed in E. coli but is not regulated by bile acids under the conditions used.  相似文献   

12.
A comprehensive study of cholesterol, bile acid, and lipoprotein metabolism was undertaken in two strains of hamster that differed markedly in their response to a sucrose-rich/low fat diet. Under basal conditions, hamsters from the LPN strain differed from Janvier hamsters by a lower cholesterolemia, a higher postprandial insulinemia, a more active cholesterogenesis in both liver [3- to 4-fold higher 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) activity and mRNA] and small intestine, and a lower hepatic acyl-coenzyme A:cholesterol acyltransferase activity. Cholesterol saturation indices in the gallbladder bile were similar for both strains, but the lipid concentration was 2-fold higher in LPN than in Janvier hamsters. LPN hamsters had a lower capacity to transform cholesterol into bile acids, shown by the smaller fraction of endogenous cholesterol converted into bile acids prior to fecal excretion (0.34 vs. 0.77). In LPN hamsters, the activities of cholesterol 7alpha-hydroxylase (C7OHase) and sterol 27-hydroxylase (S27OHase), the two rate-limiting enzymes of bile acid synthesis, were disproportionably lower (by 2-fold) to that of HMG-CoAR. When fed a sucrose-rich diet, plasma lipids increased, dietary cholesterol absorption improved, hepatic activities of HMG-CoA reductase, C7Ohase, and S27OHase were reduced, and intestinal S27OHase was inhibited in both strains. Despite a similar increase in the biliary hydrophobicity index due to the bile acid enrichment in chenodeoxycholic acid and derivatives, only LPN hamsters had an increased lithogenic index and developed cholesterol gallstones (75% incidence), whereas Janvier hamsters formed pigment gallstones (79% incidence).These studies indicate that LPN hamsters have a genetic predisposition to sucrose-induced cholesterol gallstone formation related to differences in cholesterol and bile acid metabolism.  相似文献   

13.
J Robben  G Janssen  R Merckx    H Eyssen 《Applied microbiology》1989,55(11):2954-2959
We isolated two strains of an unnamed Fusobacterium species from human intestinal microflora, which stereospecifically transformed bile acid 3-sulfates into C-3-unsubstituted, ring A-unsaturated bile acids. Both 3 alpha- and 3 beta-sulfates of 5 beta-bile acids were metabolized to delta 3-5 beta-cholenoic acids; 3 beta-sulfates of 5 alpha-bile acids were converted into a mixture of delta 2-5 alpha-bile acids and 3 alpha-hydroxy-5 alpha-bile acids, whereas 3 alpha-sulfates of 5 alpha-bile acids were left intact. Unsulfated bile acids were not transformed into unsaturated derivatives. These strains differ from previously isolated intestinal bacteria, which desulfated bile acid sulfates without further transformation.  相似文献   

14.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60 degrees C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The beta-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-beta-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-beta-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

15.
Aerobic catabolism of bile acids.   总被引:2,自引:2,他引:0       下载免费PDF全文
Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed.  相似文献   

16.
The effect of human bile juice and bile salts (sodium cholate, sodium taurocholate, sodium glycochenodeoxycholate and sodium chenodeoxycholate) on growth, sporulation and enterotoxin production by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens was determined. Each bile salt inhibited growth to a different degree. A mixture of bile salts completely inhibited the growth of enterotoxin-positive strains of this organism. Human bile juice completely inhibited the growth of all the strains at a dilution of 1:320. A distinct stimulatory effect of the bile salts on sporulation was observed in the case of C. perfringens strains NCTC 8239 and NCTC 8679. The salts also increased enterotoxin concentrations in the cell extracts of the enterotoxin-positive strains tested. No effect on enterotoxin production was detected when an enterotoxin-negative strain was examined.  相似文献   

17.
This report describes the chemical synthesis of a new bile acid analogue, namely, sodium 3 alpha, 7 alpha-dihydroxy-25-homo-5 beta-cholane-25-sulfonate from homochenodeoxycholic acid. The structure of the new compound was assigned by proton magnetic resonance and infrared spectrometry. Its metabolism was studied in the hamster in comparison with sodium 3 alpha, 7 alpha-dihydroxy-24-nor-5 beta-cholane-23-sulfonate and sodium taurochenodeoxycholate. After intraduodenal administration of the 3H-labeled analogues into bile fistula hamsters, both sulfonates were absorbed from the intestine and nearly 80% of the radioactivity was secreted into bile within 8 h. Intra-ileal administration revealed that these compounds resembled taurochenodeoxycholate in that they were much more rapidly absorbed from the ileum than from the proximal small intestine: more than 85% of the radioactivity was recovered in bile within 1 h. After intravenous infusion the sulfonates were efficiently extracted by the liver at rates similar to that of sodium taurochenodeoxycholate. Chromatographic analysis of the bile showed that, regardless of the route of administration, most (> 95%) of the sulfonates were not biotransformed and they became major biliary bile acids. Sodium 3 alpha, 7 alpha-dihydroxy-25-homo-5 beta-cholane-25-sulfonate and, to a lesser extent, sodium 3 alpha, 7 alpha-dihydroxy-24-nor-5 beta-cholane-23-sulfonate induced cholestasis at infusion rates at which sodium taurochenodeoxycholate produced choleresis.  相似文献   

18.
《Mutation Research Letters》1991,262(4):267-274
Published data on the mutagenicity of 3 bile acids in the bacterial fluctuation test are conflicting. Eleven 5β-cholanoic acids including 2 of the biie acids were assayed for mutagenicity in Salmonella typhimurium TA98 and TA100 in the fluctuation tests. In any of these bile acids at the doses tested, there were no dose-related statistically significant increases in mutagenicity compared with appropriate controls. Similarly, none of these compounds showed positive mutagenicity in both strains in the standard Ames test either with or without hepatic metabolic activation. Our results support the claim that 3 bile acids are not mutagenic, and indicate that the initiation activity of 5β-cholanoic acids is not demonstrable with a short-term assay using Salmonella strains.  相似文献   

19.
The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[-] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(-) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA. PURPOSE OF WORK: To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.  相似文献   

20.
Fourier transform infrared (FTIR)-attenuated total reflection (ATR) spectroscopy and viscometry were applied to study the micellization of two bile lipids, sodium taurochenodeoxycholate (NaTCDC) and sodium glycocholate (NaGC), in aqueous solutions. The CH2 stretching bands of the bile lipid hydrocarbon region were shifted to higher frequencies suggesting initial critical micellization at 2.5 mM for NaTCDC and 9 mM for NaGC. An abrupt enhancement of the absorption intensity of the CH3 groups of the sterol rings in bile lipids were under conformational strain at 3.5 mM NaTCDC and 9 mM NaGC. Viscometry measurements showed abrupt changes in viscosities in the region of critical micellar concentration (CMC) of both bile lipids. Both infrared and viscometry studies confirmed the onset of conformational strains in tightly packed lipid micelles at their CMC. In addition, FTIR/ATR spectroscopy has defined the specific hydrophobic interactions which bring about critical micellization of bile lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号