首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carbon isotope discrimination (δ^13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ^13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ^13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase in six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicerarietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration) varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher in the most efficient compared with the least efficient genotypes. However, δ^13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ^13C technique cannot be used in selection for transpiration efficiency in the three grain legumes (pulses) studied.  相似文献   

2.
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy‐devoted systems. We characterized variations in the carbon isotope composition (δ13C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short‐rotation plantation. Values of δ13Cwood and δ13Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79–1.01‰). Leaf phenology was strongly correlated with δ13C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ13C. Trees growing on former pasture with higher N‐availability displayed higher δ13C as compared with trees growing on former cropland. The positive relationships between δ13Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N‐related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ13C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.  相似文献   

3.
不同生境间红树科植物水分利用效率的比较研究   总被引:16,自引:0,他引:16       下载免费PDF全文
通过测定采自4个地区(海南、厦门、北海和西双版纳)的红树科6个属共9种植物,包括竹节树(Carallia brachiata)、锯叶竹节树(C. diphopetala)、山红树(Pellacalyx yunnanensis)、红树(Rhizophora apiculata)、红海榄(R. stylosa)、海莲(Bruguiera sexangula)、木榄(B. gymnorhiza)、秋茄(Kandelia candel)和角果木(Ceriops tagal)的叶片碳同位素比值(δ13C),比较了不同地区分布的红树科植物(尤其是内陆生长的和沿海生长的红树科植物之间)、同一地区分布不同种红树科植物间以及不同季节红树科植物δ13C值及其所反映的胞间CO2浓度和水分利用效率的差异。研究结果表明,红树科植物叶片的δ13C变化在-32‰~-26‰之间,大部分种类在两个生长季之间(春季和秋季)没有明显的差异,而内陆和沿海分布的红树科植物有着显著不同的δ13C值,以海水中生长的红树科植物δ13C值较高。此外,在海水中生长的红树科植物以北海地区分布的为最高,而在厦门和海南之间则较少有显著性的差异。从所取得的结果来看,植物δ13C值之间的差异可能有遗传学的基础,但环境的影响也起很大的作用。  相似文献   

4.
Fast growth and early development in barley are used in breeding programmes to improve the water use efficiency and transpiration efficiency of this crop in Mediterranean conditions. Here, we examine the use of several simple traits based on the structure and stable isotope composition of seedling leaves to assess differences in early vigour, phenology and grain yield, and also the interaction with low temperatures in barley. A set of 260 F8 lines of two-row barley (Hordeum vulgare L.) derived from the cross of Tadmor and WI 2291 were cultivated in two locations in northwest Syria. Total chlorophyll content on an area basis (SPAD) and specific leaf dry weight (SLDW) were measured in recently fully expanded intact leaves of seedlings. Total leaf area and total dry weight per seedling were evaluated in the same seedlings. The stable isotope compositions of carbon and nitrogen (δ13C and δ15N, respectively) were analyzed in the same leaves on a subset of 75 genotypes. Number of days from planting to heading and grain yield were recorded at both sites. The grain yield measured at both locations was positively correlated with the SPAD value of seedlings, but showed no relationship with SLDW. Days to heading was negatively correlated with SPAD values. Regarding early vigour, a negative relationship between the SLDW and the total leaf area of seedlings was observed. However, no relationship between the δ13C of seedlings and early vigour was observed, except when only the genotypes most resistant to low temperatures (i.e. showing the highest SPAD values) were considered. This subset of genotypes showed negative relationships between δ13C and either total leaf area or total dry weight. In addition, δ15N was negatively correlated with SPAD only within the high-SPAD genotypes. This suggests that within the genotypes resistant to low temperatures, those with higher chlorophyll content assimilate more nitrogen from nitrate.  相似文献   

5.
Wetland indicator status (WIS ) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species‐level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species‐level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA ), stem specific gravity (SSG ), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species‐level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG , seed mass, % leaf carbon and height, and for woody species occurred for height, SSG , and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low‐density stem tissue. Adaptations to drier habitats in the riparian zone include short, high‐density cavitation‐resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.  相似文献   

6.
The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rain‐fed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water‐use efficiency in Zea mays have been limited, and warrant a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water‐use in a field environment. The stable carbon isotope composition (δ13C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13C in Z. mays. Significant variation in leaf δ13C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13C to determine the optimum sampling time to maximize the use of leaf δ13C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13C. Taken together these results outline a strategy for using leaf δ13C and reveal its usefulness as a measure of transpiration efficiency under well‐watered conditions rather than a predictor of performance under drought.  相似文献   

7.
? Premise of the study: Leaf venation is linked to physiological performance, playing a critical role in ecosystem function. Despite the importance of leaf venation, associated bundle sheath extensions (BSEs) remain largely unstudied. Here, we quantify plasticity in the spacing of BSEs over irradiance and precipitation gradients. Because physiological function(s) of BSEs remain uncertain, we additionally explored a link between BSEs and water use efficiency (WUE). ? Methods: We sampled leaves of heterobaric trees along intracrown irradiance gradients in natural environments and growth chambers and correlated BSE spacing to incident irradiance. Additionally, we sampled leaves along a precipitation gradient and correlated BSE spacing to precipitation and bulk δ(13)C, a proxy for intrinsic WUE. BSE spacing was quantified using a novel semiautomatic method on fresh leaf tissue. ? Key results: With increased irradiance or decreased precipitation, Liquidambar styraciflua decreased BSE spacing, while Acer saccharum showed little variation in BSE spacing. Two additional species, Quercus robur and Platanus occidentalis, decreased BSE spacing with increased irradiance in growth chambers. BSE spacing correlated with bulk δ(13)C, a proxy for WUE in L. styraciflua, Q. robur, and P. occidentalis leaves but not in leaves of A. saccharum. ? Conclusions: We demonstrated that BSE spacing is plastic with respect to irradiance or precipitation and independent from veins, indicating BSE involvement in leaf adaptation to a microenvironment. Plasticity in BSE spacing was correlated with WUE only in some species, not supporting a function in water relations. We discuss a possible link between BSE plasticity and life history, particularly canopy position.  相似文献   

8.
Natural abundance stable‐isotope analysis (δ13C and δ15N) and C:N ratios were used to study the ammocoete phase of two common non‐parasitic lamprey species (least brook lamprey Lampetra aepyptera and American brook lamprey Lethenteron appendix) in two tributaries of the Ohio River (U.S.A.). The C:N ratios suggest that each species employs different lipid accumulation strategies to support its metamorphosis and recruitment into an adult animal. Ammocoete δ13C values generally increased with increasing C:N values. In contrast to δ13C, ammocoete δ15N values were weakly related to the total length (LT) in L. aepyptera, but positively correlated to both LT and C:N ratios in L. appendix. In L. appendix, C:N also correlated positively with LT, and presumably age. A Bayesian mixing model using δ13C and δ15N was used to estimate nutritional subsidies of different potential food resources to ammocoetes at each site. The models suggested that although nutritional subsidies to ammocoetes varied as a function of site, ammocoetes were generally reliant on large contributions (42–62% at three sites) from aquatic plants. Contributions from aquatic sediment organic matter were also important at all sites (32–63%) for ammocoetes, with terrestrially derived plant materials contributing smaller amounts (4‐33%). These findings provide important insights into the feeding ecology and nutrition of two species of lampreys. They also suggest that similar and other quantitative approaches are required to (1) fully understand how the observed stable‐isotopes ratios are established in ammocoetes and (2) better assess ammocoete nutritional subsidies in different natal streams.  相似文献   

9.
Tree-ring δ(13) C is often interpreted in terms of intrinsic water-use efficiency (WUE) using a carbon isotope discrimination model established at the leaf level. We examined whether intra-ring δ(13) C could be used to assess variations in intrinsic WUE (W(g), the ratio of carbon assimilation and stomatal conductance to water) and variations in ecosystem WUE (W(t) , the ratio of C assimilation and transpiration) at a seasonal scale. Intra-ring δ(13) C was measured in 30- to 60-μm-thick slices in eight oak trees (Quercus petraea). Canopy W(g) was simulated using a physiologically process-based model. High between-tree variability was observed in the seasonal variations of intra-ring δ(13) C. Six trees showed significant positive correlations between W(g) calculated from intra-ring δ(13) C and canopy W(g) averaged over several days during latewood formation. These results suggest that latewood is a seasonal recorder of W(g) trends, with a temporal lag corresponding to the mixing time of sugars in the phloem. These six trees also showed significant negative correlations between photosynthetic discrimination Δ calculated from intra-ring δ(13) C, and ecosystem W(t), during latewood formation. Despite the observed between-tree variability, these results indicate that intra-ring δ(13) C can be used to access seasonal variations in past W(t).  相似文献   

10.
Three species of creekside trees were monitored weekly during the 2007 and 2008 growing seasons. The 2007 growing season was wet early, but became drier as the season progressed. In contrast, the 2008 growing season was dry early, but became wetter as the season progressed. Creekside trees were measured to determine effects of changing water regimes on leaf-level processes. Lonicera tatarica plants were compared to Morus alba and Celtis occidentalis trees. Leaves were monitored for changes in stomatal conductance, transpiration, δ13C, δ15N, δD, leaf temperature, and heat losses via latent, sensible, and radiative pathways. δD of creek water was more similar to ground water than to rain water, but the creek was partially influenced by summer rains. δD of bulk leaf material was significantly higher in individuals of C. occidentalis compared to the other species, consistent with source water coming from shallower soil layers. Despite decreasing water levels, none of these tree species showed signs of water stress. There were no significant differences between species in stomatal conductance or transpiration. Leaf δ13C was significantly lower in individuals of L. tatarica compared to the other species. Differences in δ13C were attributed to a lower carboxylation capacity, consistent with lower leaf nitrogen content in L. tatarica plants. Leaf δ15N was significantly lower in individuals of L. tatarica compared to the other species, consistent with uptake of a different N source. Two of the three sites appeared to be affected by inorganic N from fertilizer run-off. Evidence is presented that these species acquired water and nitrogen from different sources, resulting from differences in root uptake patterns.  相似文献   

11.
叶片性状是决定植物光合能力和羧化能力的关键因素,研究叶片性状在海拔梯度上的变化特征是解释植物对于环境变化的适应策略的重要手段。本文以分布于红池坝(10958′E, 3130′ N)草地的5个常见物种红三叶(Trifolium pratense)、老鹳草(Geranium wilfordii)、紫菀(Aster tataricus)、火绒草(Leontopodium leontopodioides)和绣线菊(Spiraea prunifolia)为研究对象,分析了所有物种(n=56)和不同物种的叶片比叶重(LMA)、叶氮含量(单位面积氮含量Narea、单位重量氮含量Nmass)以及叶片δ13C含量沿海拔梯度(815-2545m)的变化趋势及叶片性状之间的关系。研究结果表明:所有物种样品(n=56)的比叶重(LMA)、Narea和δ13C含量沿海拔梯度的增加呈显著增加趋势;Nmass沿海拔梯度的变化趋势不明显;δ13C含量与LMA、Narea呈现极显著正相关关系;不同物种的叶片性状沿着海拔梯度的响应特征有所不同,绣线菊(S. prunifolia)和老鹳草(G. wilfordii)的叶片性状沿海拔梯度的分布规律与所有物种(n=56)样品分布规律一致,红三叶(T. pratense)、紫菀(A. tataricus)、火绒草(L. leontopodioides)的各叶片性状沿海拔梯度的分布特征有所不同。  相似文献   

12.
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.  相似文献   

13.
He C X  Li J Y  Guo M  Wang Y T  Chen C 《农业工程》2008,28(7):3008-3016
As main photosynthetic organs, leaves are very sensitive to exterior environments. Water deficiency obviously affects the biological and physiological characteristics of leaves. Xylem pathways increase when trees grow tall, which results in the increase in water gravity as well as pathway resistance. Accordingly, the physiological characteristics of leaves change along with tree height. In this research, the photosynthetic characteristics and carbon isotope ratio (δ13C) in the leaves of 4 tree species, Platanus hispanica, Robinia pseudoacacia, Fraxinus chinensis and Ginkgo biloba, were measured. The results showed that the leaf photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Cond) and internal CO2 concentration (Ci) reduced along with tree height, while the leaf δ13C increased along with tree height. The One Way ANOVA and LSD tests showed that the leaf photosynthetic characteristics and δ13C varied significantly at different tree heights (P < 0.05). The decrease in leaf photosynthetic capability and the increase in δ13C along with tree height indicate that the leaves at the tree tops suffer from water stress. These results support the hydraulic limitation hypothesis.  相似文献   

14.
选取准噶尔盆地古尔班通古特沙漠南缘9个样地中的伊犁郁金香(Tulipa iliensis)自然居群,通过测定各居群中伊犁郁金香的稳定碳同位素组成(δ^13C)、叶片和土壤中全氮、全磷、全钾以及水分含量,分析伊犁郁金香δ^13C值与上述因子之间的相互关系。结果表明:不同生境间伊犁郁金香δ^13C值差异不显著,水分利用方式可能受其基因型的控制而较为保守,同时在一定程度上也受生长环境中环境因子变化的影响,因而会有小的变幅:除了土壤中全钾含量之外,伊犁郁金香的叶片全氮、全磷、全钾、叶片水分含量以及土壤全氮、全磷和土壤水分含量在不同生境间均存在显著差异;其中伊犁郁金香叶片和土壤中的全氮含量与δ^13C值呈显著正相关:随着该植物叶片和土壤中水分含量的下降,伊犁郁金香δ^13C值显著增大,水分利用效率(WUE)明显提高。说明伊犁郁金香δ^13C值是植物的遗传学因子和环境因子共同作用的结果,其叶片及土壤中的氮素含量和有效水分含量是影响伊犁郁金香δ^13C值的关键因子。  相似文献   

15.
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon: nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰,whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C: N ratio ranged between 10.7 and 53.5,and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting.  相似文献   

16.
近70年来黄土高原典型植物δ13C值变化研究   总被引:11,自引:0,他引:11       下载免费PDF全文
对黄土高原地区 4种典型C3 植物狼牙刺 (Sophoraviciifolia) 、辽东栎 (Quercusliaotungensis) 、虎榛子 (Os tryopsisdavidiana) 和酸枣 (Zizyphusjujubavar.spinosa) 样品稳定性碳同位素组分 (δ13 C) 进行分析, 研究了从 2 0世纪 30年代至今近 70年中不同年代植物δ13 C值的变化。结果表明, 在近 70年中, 4种植物δ13 C值变化范围为- 2 5.0 5‰~ - 2 9.75‰, 平均值为 - 2 7.0 4‰。 4种植物叶片δ13 C值均呈下降趋势, 表明随气候环境变化, 近 70年4种植物的水分利用效率 (WUE) 均呈降低趋势。但不同植物叶片δ13 C值下降幅度不同 :狼牙刺和辽东栎叶片δ13 C值下降非常明显, 虎榛子叶片δ13 C值下降也较明显, 而酸枣叶片δ13 C值下降不明显。 4种植物δ13 C值的降低率分别为 14.6 5 %、14.4 6 %、11.99%和 2.4 4 %, 说明不同植物对气候环境因子的敏感性不同, 具有不同的适应环境变化的策略, 酸枣是 4种植物中耐旱能力较强, WUE较高的物种。  相似文献   

17.
毛白杨杂种无性系叶片δ13C差异与气体交换参数   总被引:4,自引:1,他引:3       下载免费PDF全文
在苗木生长的不同时期对13个毛白杨(Populus tomentosa)杂种无性系叶片碳同位素δ13C和气体交换参数(净光合速率Pn、蒸腾速率Tr、瞬时水分利用效率WUEi、气孔导度Gs和胞间CO2浓度Ci)的差异进行研究, 分析不同无性系间δ13C与气体交换参数的相互关系, 目的在于探求δ13C在筛选高光合及高水分利用效率毛白杨杂种无性系中的应用价值。结果表明: 不同生长时期和不同无性系间δ13C、TrWUEiGsCi的差异均显著, δ13C和WUEi表现为9月>7月, TrGsCi表现为7月>9月, Pn在不同生长时期差异不显著。季节变化是引起毛白杨杂种无性系叶片δ13C差异的主要原因。同一时期, 无性系间δ13C和WUEi表现出较好的一致性, 即WUEi较高的无性系30、42、46、83、BL2和BL5, 其δ13C值也较高, WUEi较低的无性系B331和TG34, 其δ13C值也较低, 且不同时期(7月和9月) δ13C和WUEi呈较强的正相关, 相关系数r分别为0.739 0和0.545 8, 高δ13C可以作为筛选高WUEi毛白杨的有效指标, 且在苗木生长旺盛时期选育能得到更为可靠的结果。对毛白杨而言, 高WUEi的无性系, 一般具有适中或较低的GsCi, 但不一定具有很高的Pn, 气孔调节使得毛白杨在不影响光合作用的同时保持较高的WUE。  相似文献   

18.
Abstract

The xylem conduit dimensions (i.e. their width and length) have been measured in 1-year-old internodes, nodes and node-to-petiole (N-P) junctions of three species with diffuse-porous wood, namely Ceratonia siliqua L., Laurus nobilis L. and Olea europaea L. as well as of three species with ring-porous wood, namely Quercus ilex L., Q. suber L. and Q. pubescens Willd‥ The xylem conduit diameter and length distributions have been related to the drought resistance strategies adopted by the six species. C. siliqua and Q. ilex (drought avoiding water spenders) showed the widest xylem conduits (each species within its characteristic pattern of wood anatomy). This is consistent with their high demand of efficient water transport to leaves. L. nobilis (drought avoiding water saver) showed relatively narrow xylem conduits, efficient enough, however, to assure water supply to leaves at the reduced transpiration rate exhibited by the species. O. europaea, Q. suber and Q. pubescens (drought tolerants) showed the narrowest xylem conduits but also the longest ones. The xylem system of C. siliqua and Q. ilex represented a good compromise between efficiency and safety of the water transport, the former as due to wide xylem conduits, the latter to the reduced xylem conduit length as well as to the strong «hydraulic constrictions» at their nodes and N-P junctions. The ecological interpretation of such hydraulic architecture is discussed.  相似文献   

19.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

20.
鼎湖山季风常绿阔叶林的主要优势乔木树种黧蒴和荷木的幼苗,盆栽于自然光照和人工调节CO2浓度为500μl·L-1或空气CO2(340μl·L-1)的气罩中3个月.在各自生长条件下测定,高CO2下生长的黧蒴和荷木叶片平均气孔导度分别降低13%和20%,蒸腾速率下降20%和18%,水分利用效率提高1倍以上,不同CO2浓度下的植物叶片气孔导度和蒸腾速率日进程曲线也有明显差异.处理后将幼苗置于自然条件下观测其后效应,第7d时处理间的气孔导度和蒸腾速率皆无明显差异  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号