首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield.  相似文献   

2.
As one of the most widely promoted water-saving irrigation strategies for rice, alternate wetting and drying irrigation (AWD) can not only save water but also increase mineral nutrient use efficiency. In this study, we compared the growth conditions of four rice varieties (two lowland and two upland varieties) under three irrigation regimes: continuously flooded (CF), alternate wetting and moderate soil drying (AWD15) and alternate wetting and severe soil drying (AWD30). AWD15 and AWD30 enabled the plants to receive fewer irrigation events and less irrigation water than CF, thereby saving both water resources and labor. AWD15 reduced redundant vegetative growth, promoted root growth, and increased the root-shoot ratio and harvest index. AWD15 increased the grain yield, water use efficiency (WUE) and phosphorus use efficiency (PUE) of upland rice and maintained the grain yield while increasing the WUE and PUE of lowland rice. More developed root systems under AWD helped upland rice to maintain a higher water status than lowland rice when plants were subjected to soil drying, which resulted in superior performance in grain yield in upland rice. AWD30 could not reconcile the demands of higher yield and the desire to reduce irrigation water use because it decreased grain yield. The results indicate that AWD15 irrigation of rice can not only increase rice yield and WUE but also enhance PUE, which can potentially reduce the use of phosphorus fertilizers. The results provide theoretical and technical support for improving rice cultivation.  相似文献   

3.
不同土壤水分处理对水稻光合特性及产量的影响   总被引:7,自引:0,他引:7  
王唯逍  刘小军  田永超  姚霞  曹卫星  朱艳 《生态学报》2012,32(22):7053-7060
为探明土壤水分对水稻生长发育的影响机理,以武香粳14和两优培九为试验材料,分析了不同土壤水分处理下(W1、W2、W3和CK分别表示土壤体积含水量为20%、30%、40%和5cm水层灌溉)的水稻光合特性、产量及水分生产率等。结果表明,轻度水分胁迫(W3)具有处理间最大的叶片气孔导度、蒸腾速率和净光合速率,其他处理规律不显著。灌浆初期各水分处理下叶位间光合指标均表现为:剑叶>顶2叶>顶3叶>顶4叶,其他生育期规律不显著。与对照处理(CK)相比,武香粳14的W1、W2和W3处理的产量分别减少61.14%和29.13%、增加0.96%,水分生产率分别减少10.69%、增加1.53%和20.61%;两优培九的产量分别减少64.11%和28.76%,增加2.08%,水分生产率分别减少16.39%,增加2.46%和22.13%。研究结果为水稻精确灌溉和节水生产提供了技术支撑。  相似文献   

4.
This study tested the hypothesis that a post-anthesis moderate soil drying can improve grain filling through regulating the key enzymes in the sucrose-to-starch pathway in the grains of rice (Oryza sativa L.). Two rice cultivars were field grown and two irrigation regimes, alternate wetting and moderate soil drying (WMD) and conventional irrigation (CI, continuously flooded), were imposed during the grain-filling period. The grain-filling rate and activities of four key enzymes in sucrose-to-starch conversion, sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE), showed no significant difference between WMD and CI regimes for the earlier flowering superior spikelets. However, they were significantly enhanced by the WMD for the later flowering inferior spikelets. The activities of both soluble and insoluble acid invertase in the grains were little affected by the WMD. The two cultivars showed the same tendencies. The activities of SuSase, AGPase, StSase, and SBE in grains were very significantly correlated with the grain-filling rate. The abscisic acid (ABA) concentration in inferior spikelets was remarkably increased in the WMD and very significantly correlated with activities of SuSase, AGPase, StSase, and SBE. Application of ABA on plants under CI produced similar results to those seen in plants receiving WMD. Applying fluridone, an indirect inhibitor of ABA synthesis, produced the opposite effect. The results suggest that post-anthesis WMD could enhance sink strength by regulating the key enzymes involved, and consequently, increase the grain-filling rate and grain weight of inferior spikelets. ABA plays an important role in this process.  相似文献   

5.
Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity.  相似文献   

6.
杨荣  苏永中 《生态学报》2009,29(3):1459-1469
在黑河中游边缘绿洲沙地农田研究了不同的水氮配合对玉米产量、土壤硝态氮在剖面中的累积和氮平衡的影响.结果表明,施氮处理较不施氮处理产量增加48.22%~108.6%,施氮量超过225 kg hm-2,玉米产量不再显著增加.受土壤结构影响土壤硝态氮在土壤中呈"W"型分布,即土壤硝态氮含量在0~20 cm、140~160 cm和260~300 cm土层均出现峰值,并随施氮量增加,峰值增高.在常规高灌溉量处理硝态氮含量峰值最高值出现在260~300 cm土层,节水25%灌溉处理硝态氮含量峰值最高值出现在土壤表层0~20 cm土层.在常规高灌溉量处理0~300 cm土层中200~300土层硝态氮累积量所占比例最高,介于27.56%~51.86%之间;节水25%灌溉处理在0~300 cm土层中100~200土层硝态氮累积量所占比例最高,介于32.94%~38.07%之间;表明低灌溉处理下土壤硝态氮在土壤浅层累积较多,而高灌溉处理使更多的硝态氮淋溶至土壤深层.与2006年相比,2007年不施氮处理0~200 cm土层土壤硝态氮含量和积累量均明显减少;而施氮处理变化很小,在低灌溉处理甚至表现出硝态氮含量和积累量增加,表明施氮是土壤硝态氮累积的主要来源,而灌溉则使硝态氮向土壤深层淋溶.0~200 cm 土层土壤硝态氮累积量平均介于27.66~116.68 kg hm-2、氮素表观损失量平均介于77.35~260.96 kg hm-2,和施氮量均呈线性相关,即随施氮量增加,土壤硝态氮累积量和氮素表观损失量均增加,相关系数R2介于0.79~0.99之间,相关均显著.随施氮量增加,玉米总吸氮量和氮收获指数增加,氮的农学利用率降低,而灌溉的影响较小.施氮量超过225 kg hm-2时,地上部植株氮肥吸收利用率和籽粒氮肥吸收利用率开始有降低趋势.所以,在沙地农田,节水10%~25%的灌溉水平和225 kg hm-2的施氮水平可以在避免水肥过量投入的基础上减少土壤有机氮淋溶对地下水造成的污染威胁.  相似文献   

7.
以两个茎秆贮藏物质利用效率不同的水稻(Oryza sativa)杂交组合(‘汕优63’和‘Pc311/早献党’)为材料,进行土壤水分亏缺处理(Water-deficit),以水层灌溉为对照(Well-watered),研究水分亏缺对水稻茎贮藏性碳水化合物运转及其关键酶活性的调节作用。结果表明,水分亏缺促进了水稻茎秆贮藏物质的运转和对籽粒产量的贡献,开花前茎秆贮藏的碳水化合物对产量贡献率分别提高了1.9~3.0倍(与水层灌溉相比)。土壤水分亏缺诱导了水稻茎节间α-淀粉酶、β-淀粉酶、α-葡萄糖苷酶、D-酶活性上升,但淀粉磷酸化酶受到了抑制,说明土壤水分亏缺加强水稻茎秆贮藏淀粉水解途径,而不是磷酸解途径。就蔗糖代谢而言,土壤水分亏缺提高了蔗糖磷酸合成酶的活性和活化状态,抑制蔗糖转化酶活性,促进蔗糖合成,加速贮藏物质快速降解和转移,从而调节稻株贮藏碳水化合物向籽粒的分配。  相似文献   

8.

The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3). A significant improvement was observed in soil organic matter (14.9%), nitrate nitrogen (106.7%), total phosphorus (23.9%), available phosphorus (26.2%), straw yield (44.8%), and grain yield (54.7%) with BMP2 treatment as compared to CON. The study concludes that integrating chemical and organic fertilizers with water-saving irrigation (BMP2) is a good approach to increasing corn productivity, ensuring water safety and improving soil health. The limitations of the current study include the identification of fertilizer type and its optimum dose, irrigation water type, and geographical position.

  相似文献   

9.
Drought stress destructively affects the growth and productivity of sorghum crop, especially under saline soils. Therefore, Field trials were performed to determine the influence of water stress on water productivity (water productivity for grain, (G-WP) and water productivity for forage, (F-WP), yield of sorghum and soil properties in salt-affected soil (8.20 dS m?1) under different sowing dates and irrigation regimes. The summer sowing (SS) was performed on 1 April while fall sowing (FS) was established on 2 August. The irrigation regimes were; 100, 90, 80, and 70% of crop evapotranspiration (ETc). The findings displayed that the fodder and grain yields were increased by 23% and 26% under SS compared to FS over the two seasons 2017 and 2018, respectively. Among irrigation levels, the maximum values of grain and fodder yield were given by 100% of ETc, while a non-significant difference was observed between 100% and 90% of ETc. Moreover, the maximum values of G-WP (1.31%) and F-WP (9.00%) were recorded for 90% of ETc. Interestingly, the soil salinity was decreased in 0–0.6 m depth, and more decline was noted in 0–0.2 m depth using 90% of ETc. The highest salt accumulation withinside the soil profile was recorded under 70% of ETc in comparison to 100% of ETc. Thereupon, under water scarcity, application of 90% of ETc is recommended with SS to save 10% of the applied irrigation water without a significant decrease in grain yield (GY).  相似文献   

10.
在2009-2010和2010-2011年小麦生长季,设置10、20、40、60、80和100 m 6个畦田长度,研究不同畦长对小麦耗水特性及产量的影响.结果表明: ≤80 m畦长处理下,随畦长的增加,灌水量逐渐增加,灌水量占总耗水量的比例增加,土壤贮水消耗量减少,小麦拔节至开花期的耗水量和生长季总耗水量均减少,开花期0~200 cm各土层土壤含水量增加,土壤供水能力提高,籽粒产量和水分利用效率逐渐提高.与80 m畦长处理相比,<80 m畦长处理的灌水量少,上层土壤含水量低,促使小麦吸收更多的深层贮水,总耗水量增加,不利于节水;而100 m畦长处理的灌水量、土壤贮水消耗量和总耗水量均增加,由于一次性灌水量过多且灌溉水分布不均匀,导致小麦千粒重降低,籽粒产量和水分利用效率显著下降,也不利于节水高产.  相似文献   

11.
结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因   总被引:3,自引:0,他引:3       下载免费PDF全文
通过分析结实期土壤水分亏缺对水稻(Oryza sativa)籽粒中蔗糖向淀粉合成的生理代谢中关键酶活性及籽粒灌浆的调节作用, 探讨土壤水分亏缺影响水稻籽粒灌浆的生理机制。结果表明, 适度土壤水分亏缺诱导了灌浆高峰期(花后15-20天)水稻籽粒中蔗糖合成酶、腺苷二磷酶葡萄糖焦磷酸化酶、可溶性淀粉合成酶及淀粉分支酶活性的增加, 提高了籽粒灌浆中前期(花后10-20天)籽粒中淀粉积累速率和籽粒灌浆速率。但在灌浆后期(花后20-30天)籽粒中, 上述关键酶活性下降较快, 籽粒活跃灌浆期明显缩短, 灌浆前中期灌浆速率的增加不能完全补偿灌浆期缩短带来的同化物积累损失, 导致水分亏缺处理水稻籽粒充实不良, 结实率、籽粒重和产量显著降低。研究认为, 灌浆期土壤水分亏缺引起的灌浆后期籽粒中蔗糖向淀粉合成代谢中一些关键酶活性快速下降和籽粒内容物的供应不足是籽粒淀粉积累总量减少、粒重降低的主要生理原因。  相似文献   

12.
推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响   总被引:2,自引:0,他引:2  
王红光  于振文  张永丽  王东  石玉 《生态学报》2012,32(6):1861-1870
摘要:2007—2008年度以高产冬小麦品种济麦22为材料,设置2个拔节水灌溉时期,为拔节期和拔节后10 d;3个目标相对含水量,灌水后0~140 cm土层土壤相对含水量分别达到65%、75%、80%,以W1、W2、W3表示拔节期灌水处理,DW1、DW2、DW3表示拔节后10 d灌水处理;开花期均灌水至0~140 cm土层土壤相对含水量为70%,研究推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响。结果表明:(1)W2和DW2处理有利于提高0~60 cm土层土壤硝态氮含量,促进籽粒氮素积累;营养器官贮藏氮素向籽粒的转运量、籽粒产量和氮肥偏生产力分别高于W1和DW1,与W3和DW3处理无显著差异;开花后植株氮素积累量、籽粒蛋白质含量和水分利用效率分别高于W3和DW3,是拔节期和拔节后10 d灌水的最优处理。(2)W2和DW2处理比较,DW2成熟期100~140 cm土层硝态氮残留量低于W2,籽粒产量、籽粒蛋白质含量、氮素吸收效率、氮肥偏生产力和水分利用效率均显著高于W2,是本试验条件下的最佳灌水方案。2008—2009生长季试验各处理变化趋势同2007—2008年度。  相似文献   

13.
调亏灌溉对冬小麦耗水特性和水分利用效率的影响   总被引:10,自引:2,他引:10  
以高产中筋冬小麦品种济麦22为材料,在山东兖州小孟镇史王村进行田间试验,研究了调亏灌溉对冬小麦耗水特性和水分利用效率的影响.结果表明:在全生育期降水228 mm条件下,W1(土壤相对含水量:播种期80%+拔节期70%+开花期70%)和W4(土壤相对含水量:播种期90%+拔节期85%+开花期85%)处理总耗水量高于W0(土壤相对含水量:播种期80%+拔节期65%+开花期65%)、W2(土壤相对含水量:播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量:播种期90%+拔节期80%+开花期80%)处理,W1和W4处理间无显著差异;W1处理增加了0~200 cm土层土壤贮水消耗量,降低了小麦拔节至开花期的耗水模系数,提高了开花至成熟期的耗水模系数;W4处理在开花至成熟期、拔节至开花期的耗水量和耗水模系数均较大.调亏灌溉条件下,W0处理水分利用效率较高,但产量最低;随灌溉量增加,其他处理水分利用效率呈先增加后降低的趋势.耗水量最高的W1和W4处理产量也最高,W1处理灌溉水利用效率和灌溉效益均高于W4处理,为本试验条件下高产节水的最佳处理.  相似文献   

14.
水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响   总被引:9,自引:0,他引:9  
以两个不同品质类型的小麦品种(强筋品种豫麦34、弱筋品种豫麦50)为材料,在大田条件下,研究了3个灌水处理(W1:拔节水;W2:拔节水+花后15 d灌浆水;W3:拔节水+灌浆水+花后28 d麦黄水)和3个氮肥水平(0、150、270 kg·hm-2)对籽粒蛋白质、淀粉含量及其组分的影响.结果表明:270 kg·hm-2的施氮量有利于提高强筋小麦(豫麦34)籽粒蛋白质含量,籽粒清蛋白、醇溶蛋白和谷蛋白含量明显提高,谷/醇增大;支链淀粉和总淀粉含量提高,直/支下降;籽粒产量增加.弱筋小麦(豫麦50)在150 kg·hm-2 的施氮量下,清蛋白和醇溶蛋白含量增加,球蛋白和谷蛋白含量下降,谷/醇降低;支链淀粉和总淀粉含量提高;不施氮肥或氮肥施用过多(270 kg·hm-2)均影响籽粒蛋白质和淀粉的积累,使产量下降.W2处理促进了籽粒蛋白质和淀粉积累,W1或W3处理均不利于籽粒蛋白质和淀粉积累,且导致籽粒产量下降.水、氮互作效应中,强筋和弱筋小麦分别以全生育期270 kg·hm-2和150 kg·hm-2施氮量配合拔节水+灌浆水(W2)为比较理想的水氮运筹方式.  相似文献   

15.
To understand the effect of water stress on the remobilization of prestored carbon reserves, the changes in the activities of starch hydrolytic enzymes and sucrose-phosphate synthase (SPS) in the stems of rice (Oryza sativa L.) during grain filling were investigated. Two rice cultivars, showing high lodging-resistance and slow remobilization, were grown in the field and subjected to well-watered (WW, psi(soil)=0) and water-stressed (WS, psi(soil)=-0.05 MPa) treatments 9 d after anthesis (DAA) till maturity. Leaf water potentials of both cultivars markedly decreased during the day as a result of WS treatment, but completely recovered by early morning. WS treatment accelerated the reduction of starch in the stems, promoted the reallocation of prefixed (14)C from the stems to grains, shortened the grain filling period, and increased the grain filling rate. More soluble sugars including sucrose were accumulated in the stems under WS than under WW treatments. Both alpha- and beta-amylase activities were enhanced by the WS, with the former enhanced more than the latter, and were significantly correlated with the concentrations of soluble sugars in the stems. The other two possible starch-breaking enzymes, alpha-glucosidase and starch phosphorylase, showed no significant differences in the activities between the WW and WS treatments. Water stress also increased the SPS activity that is responsible for sucrose production. Both V(limit) and V(max), the activities of the enzyme at limiting and saturating substrate concentrations, were enhanced and the activation state (V(limit)/V(max)) was also increased as a result of the more significant enhancement of V(limit). The enhanced SPS activity was closely correlated with an increase of sucrose accumulation in the stems. The results suggest that the fast hydrolysis of starch and increased carbon remobilization were attributed to the enhanced alpha-amylase activity and the high activation state of SPS when the rice was subjected to water stress.  相似文献   

16.
Yang J  Zhang J  Wang Z  Zhu Q  Wang W 《Plant physiology》2001,127(1):315-323
Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed (14)C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.  相似文献   

17.
The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic), cultivar (‘Cocodrie’ and ‘Rondo’), and soil texture (clay and sandy loam) on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.  相似文献   

18.
不同耕作方法对水稻生长和土壤生态的影响   总被引:47,自引:1,他引:47  
1998-1999年在华南双季稻田研究了不同耕作方法水稻生长和土壤生态的影响,结果表明,在抛秧条件下,免耗水稻分蘖数,有效穗数和实粒数减少,水稻产量比传统耕降低13.4%,经济效益减少10.9%,免耕土壤容重和硬度增大,癖孔隙度,非毛管孔隙度和有效P,K降低,放线菌和真菌数量减少,而土壤细菌数量增加,酶活性增强,轻耕和传统耕的土壤物理化学性质,微生物数量和酶活性相似,但轻耕水稻有效穗数和千粒重较高,水稻产量比传统耕增加2.1%,轻耕降低了耕作成本,经济效益比传统耕作提高11.0%。  相似文献   

19.
Zinc nutrition in rice production systems: a review   总被引:1,自引:0,他引:1  

Background

Zinc (Zn) deficiency is one of the important abiotic factors limiting rice productivity worldwide and also a widespread nutritional disorder affecting human health. Given that rice is a staple for populations in many countries, studies of Zn dynamics and management in rice soils is of great importance.

Scope

Changing climate is forcing the growers to switch from conventional rice transplanting in flooded soils to water-saving cultivation, including aerobic rice culture and alternate wetting and drying system. As soil properties are changed with altered soil and water management, which is likely to affect Zn solubility and plant availability and should be considered before Zn management in rice. In this review, we critically appraise the role of Zn in plant biology and its dynamics in soil and rice production systems. Strategies and options to improve Zn uptake and partitioning efficiency in rice by using agronomic, breeding and biotechnological tools are also discussed.

Conclusions

Although soil application of inorganic Zn fertilizers is widely used, organic and chelated sources are better from economic and environmental perspectives. Use of other methods of Zn application (such as seed treatment, foliar application etc., in association with mycorrhizal fungi) may improve Zn-use efficiency in rice. Conventional breeding together with modern genomic and biotechnological tools may result in development of Zn-efficient rice genotypes that should be used in conjunction with judicious fertilization to optimize rice yield and grain Zn content.  相似文献   

20.
刘水  李伏生 《生态学报》2014,34(18):5249-5256
由于作物需水随生育期的变化,分根区交替灌溉(AI)的节水效果也会随生育期而发生变化,探明不同生育期分根区交替灌溉对玉米生长和水分养分利用的影响,以期为分根区交替灌溉的实施和充分发挥其节水节肥效果奠定理论基础。通过盆栽试验,在2种灌水水平(正常灌水和轻度缺水)和2种有机无机氮比例(100%无机氮和70%无机氮+30%有机氮)下,以常规灌溉(CI)为对照,分别研究苗期—灌浆初期、苗期—拔节期以及拔节期—抽雄期进行AI对玉米干物质量、氮钾含量和吸收量以及土壤碱解氮和速效钾含量的影响。结果表明,在轻度缺水和有机无机氮肥配施下,与CI相比,拔节期—抽雄期分根区交替灌溉玉米地上部和总干物质量分别增加29.6%和27.4%,地上部和总N吸收量增加50.7%和50.4%。与单施无机氮肥相比,有机无机氮肥配施会在不同程度上增加地上部和总N吸收量,但是一般降低土壤碱解氮和速效钾含量,这说明在轻度缺水和有机无机N肥配施下,拔节期—抽雄期进行分根区交替灌溉提高玉米总干物质量和N吸收量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号