首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A most-probable-number method using 14C-labeled substrates is described for the enumeration of aquatic populations of heterotrophic microorganisms. Natural populations of microorganisms are inoculated into dilution replicates prepared from the natural water from which the organisms originated. The natural water is supplemented with a 14C-labeled compound added so as to approximate a true environmental concentration. 14CO2 evolved by individual replicates is trapped in NaOH and counted by liquid scintillation techniques for use in scoring replicates as positive or negative. Positives (14CO2 evolution) are easily distinguished from negatives (no 14CO2 evolution). The results from a variety of environments using the 14CO2 procedure agreed well with previously described methods, in most instances. The 14C-most-probable-number method described here reduces handling procedures over previously described most-probable-number procedures using 14C-labeled substrates. It also appears to have advantages over other enumeration methods in its attempt to approximate natural conditions more closely.  相似文献   

2.
We describe multiwell assays for detecting the accumulation as well as the subsequent oxidation of (14)C-labeled substrates in cultured cells. Accumulation is monitored in real time by an established scintillation proximity assay in which the scintillator is embedded in the plate base primarily detecting cell-associated radiolabel. The substrate oxidation assay is a novel variant of previously described experimental approaches aimed at trapping (14)CO(2) produced by isolated enzymes, organelles, or intact cells. This method uses a standard 96-well tissue culture plate and, on top, an inverted filter plate immersed with NaOH that are clamped into a sandwich sealed with a silicon gasket to obtain gas-tight compartments. (14)CO(2) is captured in the filter and quantified by conventional scintillation. We demonstrate both the accumulation and subsequent oxidation of (14)C-labeled substrates in cultured human myotubes, adipocytes, and hepatocytes. Both methods are adaptable for compound screening; at the same time, these protocols provide easy-to-use and time- saving methods for in vitro studies of cellular fuel handling.  相似文献   

3.
A novel catabolic transformation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) by microorganisms is reported. Several strains of Bacillus megaterium and a strain of Streptomyces are shown to convert vanillate to guaiacol (o-methoxyphenol) and CO2 by nonoxidative decarboxylation. Use of a modified most-probable-number procedure shows that numerous soils contain countable numbers (10(1) to 10(2) organisms per g of dry soil) of aerobic sporeformers able to convert vanillate to guaiacol. Conversion of vanillate to guaiacol by the microfloras of most-probable-number replicates was used as the criterion for scoring replicates positive or negative. Guaiacol was detected by thin-layer chromatography. These results indicate that the classic separations of catabolic pathways leading to specific ring-fashion substrates such as protocatechuate and catechol are often interconnectable by single enzymatic transformations, usually a decarboxylation.  相似文献   

4.
Untransformed diploid skin fibroblasts from eight normal adults, aged 24 to 74 years, catabolized several 14C-labeled substrates less effectively than cells from ten normal male infants. 14C-labeled substrate metabolism was quantitated either by measuring the evolution of 14CO2 from the 14C-labeled compounds or the incorporation of 14C into cellular protein via transamination of tricarboxylic acid cycle intermediates derived from the 14C-labeled substrates. With these methods, adult cells catabolized [1-14C]butyrate, [1-14C]octanoate, and 1-[2-14C]leucine at rates 44 to 64% of those found in infant cells. The oxidation of [1,4-14C]succinate and [U-14C]malate was identical in both infant and adult cells, while [2,3-14C]succinate catabolism was mildly decreased in adult cells (65-80% of control). These observations parallel those made in rat tissues and confirm that the same phenomenon occurs in cultured human fibroblasts.  相似文献   

5.
Most heterotrophic bacteria assimilate CO(2) in various carboxylation reactions during biosynthesis. In this study, assimilation of (14)CO(2) by heterotrophic bacteria was used for isotope labeling of active microorganisms in pure cultures and environmental samples. Labeled cells were visualized by microautoradiography (MAR) combined with fluorescence in situ hybridization (FISH) to obtain simultaneous information about activity and identity. Cultures of Escherichia coli and Pseudomonas putida assimilated sufficient (14)CO(2) during growth on various organic substrates to obtain positive MAR signals. The MAR signals were comparable with the traditional MAR approach based on uptake of (14)C-labeled organic substrates. Experiments with E. coli showed that (14)CO(2) was assimilated during both fermentation and aerobic and anaerobic respiration. The new MAR approach, HetCO(2)-MAR, was evaluated by targeting metabolic active filamentous bacteria, including "Candidatus Microthrix parvicella" in activated sludge. "Ca. Microthrix parvicella" was able to take up oleic acid under anaerobic conditions, as shown by the traditional MAR approach with [(14)C]oleic acid. However, the new HetCO(2)-MAR approach indicated that "Ca. Microthrix parvicella," did not significantly grow on oleic acid under anaerobic conditions with or without addition of NO(2)(-), whereas the addition of O(2) or NO(3)(-) initiated growth, as indicated by detectable (14)CO(2) assimilation. This is a metabolic feature that has not been described previously for filamentous bacteria. Such information could not have been derived by using the traditional MAR procedure, whereas the new HetCO(2)-MAR approach differentiates better between substrate uptake and substrate metabolism that result in growth. The HetCO(2)-MAR results were supported by stable isotope analysis of (13)C-labeled phospholipid fatty acids from activated sludge incubated under aerobic and anaerobic conditions in the presence of (13)CO(2). In conclusion, the novel HetCO(2)-MAR approach expands the possibility for studies of the ecophysiology of uncultivated microorganisms.  相似文献   

6.
Here, we present a new in-situ method to study the uptake of amino acids by soil fungi. We injected 14C-labeled glycine into a marshland soil and measured the rate and the 14C signature of CO2 respired from sporocarps of Pholiota terrestris over 53.5 h and 2 m. We also determined the incorporation of glycine-C into sporocarp tissue. The 14C signature of the CO2 and tissue was quantified by accelerator mass spectrometry. After the label application, the rate of CO2 flux and its 14C signature from chambers with sporocarps were significantly higher than from chambers without sporocarps, and then declined with time. Postlabel, the 14C signature of the sporocarp tissue increased by 35 per thousand. We show that this approach can be used to study below-ground food webs on an hourly time-scale while minimizing the perturbation of competitive relationships among soil microorganisms and between plants and soil microorganisms. Additionally we show that care must be taken to avoid confounding effects of sporocarp senescence on rates and radiocarbon signatures of respired CO2.  相似文献   

7.
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.  相似文献   

8.
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies.  相似文献   

9.
Methods are described for the detection of low numbers of bacteria by monitoring (14)CO(2) evolved from (14)C-labeled substrates. Cell suspensions are filtered with membrane filters, and the filter is then moistened with 0.1 ml of labeled medium in a small, closed apparatus. Evolved (14)CO(2) is collected with Ba(OH)(2)-moistened filter pads and assayed with conventional radioactivity counting equipment. The kinetics of (14)CO(2) evolution are shown for several species of bacteria. Fewer than 100 colony-forming units of most species tested were detected in 2 h or less. Bacteria were inoculated into blood and the mixture was treated to lyse the blood cells. The suspension ws filtered and the filter was placed in a small volume of labeled medium. The evolved (14)CO(2) was trapped and counted. A key development in the methodology was finding that an aqueous solution of Rhyozyme and Triton X-100 produced lysis of blood but was not detrimental to bacteria.  相似文献   

10.
A miniaturized most-probable-number method was designed to enumerate specific fuel-degrading populations of microorganisms. The protocol for this method is described for the estimation of populations of total het-erotrophs as well as gasoline- and diesel-degrading microorganisms. We have found the method to be useful for assessing the numbers of specific microbial populations in arctic and subarctic groundwater and soils contaminated by various refined fuel products. The assay is easy to perform and provides one inexpensive indicator of the microbial potential for degradation of contaminants at polluted sites.  相似文献   

11.
Our goal was to develop a field soil biodegradation assay using (13)C-labeled compounds and identify the active microorganisms by analyzing 16S rRNA genes in soil-derived (13)C-labeled DNA. Our biodegradation approach sought to minimize microbiological artifacts caused by physical and/or nutritional disturbance of soil associated with sampling and laboratory incubation. The new field-based assay involved the release of (13)C-labeled compounds (glucose, phenol, caffeine, and naphthalene) to soil plots, installation of open-bottom glass chambers that covered the soil, and analysis of samples of headspace gases for (13)CO(2) respiration by gas chromatography/mass spectrometry (GC/MS). We verified that the GC/MS procedure was capable of assessing respiration of the four substrates added (50 ppm) to 5 g of soil in sealed laboratory incubations. Next, we determined background levels of (13)CO(2) emitted from naturally occurring soil organic matter to chambers inserted into our field soil test plots. We found that the conservative tracer, SF(6), that was injected into the headspace rapidly diffused out of the soil chamber and thus would be of little value for computing the efficiency of retaining respired (13)CO(2). Field respiration assays using all four compounds were completed. Background respiration from soil organic matter interfered with the documentation of in situ respiration of the slowly metabolized (caffeine) and sparingly soluble (naphthalene) compounds. Nonetheless, transient peaks of (13)CO(2) released in excess of background were found in glucose- and phenol-treated soil within 8 h. Cesium-chloride separation of (13)C-labeled soil DNA was followed by PCR amplification and sequencing of 16S rRNA genes from microbial populations involved with (13)C-substrate metabolism. A total of 29 full sequences revealed that active populations included relatives of Arthrobacter, Pseudomonas, Acinetobacter, Massilia, Flavobacterium, and Pedobacter spp. for glucose; Pseudomonas, Pantoea, Acinetobacter, Enterobacter, Stenotrophomonas, and Alcaligenes spp. for phenol; Pseudomonas, Acinetobacter, and Variovorax spp. for naphthalene; and Acinetobacter, Enterobacter, Stenotrophomonas, and Pantoea spp. for caffeine.  相似文献   

12.
A new procedure was developed for the study of lignin biodegradation by pure or mixed cultures of microorganisms. Natural lignocelluloses were prepared containing C in primarily their lignin components by feeding plants l-[U-C]phenylalanine through their cut stems. Lignin degradation was observed in numerous soils by monitoring evolution of CO(2) from [C]lignin-labeled oak (Quercus albus), maple (Acer rubrum), and cattail (Typha latifola). An organism (Thermonospora fusca ATCC 27730) that is known to degrade cellulose but not lignin was shown to grow on lignocellulose in the presence of [C]lignocelluloses without evolution of CO(2). A known lignin degrader (a white-rot fungus, Polyporus versicolor) was shown to readily evolve CO(2) from damp C-labeled cattail and C-labeled maple.  相似文献   

13.
Benzene was mineralized to CO2 by aquifer-derived microorganisms under strictly anaerobic conditions. The degradation occurred in microcosms containing gasoline-contaminated subsurface sediment from Seal Beach, California, and anaerobic, sulfide-reduced defined mineral medium supplemented with 20 mM sulfate. Benzene, at initial concentrations ranging from 40 to 200 microM, was depleted in all microcosms and more than 90% of 14C-labeled benzene was mineralized to 14CO2.  相似文献   

14.
The role of hexokinase in carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea), maize (Zea mays) mesophyll, and Chlamydomonas reinhardtii chloroplasts externally supplied with 14C-labeled fructose, glucose, mannose, galactose, maltose, and ribose. Glucose and ribose were the preferred substrates with the Chlamydomonas and maize chloroplasts, respectively. The rate of CO2 release from fructose was about twice that from glucose in the spinach chloroplast. Externally supplied ATP stimulated the rate of CO2 release. The pH optimum for CO2 release was 7.5 with ribose and fructose and 8.5 with glucose as substrates. Probing the outer membrane polypeptides of the intact spinach chloroplast with two proteases, trypsin and thermolysin, decreased 14CO2 release from glucose about 50% but had little effect when fructose was the substrate. Tryptic digestion decreased CO2 release from glucose in the Chlamydomonas chloroplast about 70%. 14CO2 evolution from [1-14C]-glucose-6-phosphate in both chloroplasts was unaffected by treatment with trypsin. Enzymic analysis of the supernatant (stroma) of the lysed spinach chloroplast indicated a hexokinase active primarily with fructose but with some affinity for glucose. The pellet (membranal fraction) contained a hexokinase utilizing both glucose and fructose but with considerably less total activity than the stromal enzyme. Treatment with trypsin and thermolysin eliminated more than 50% of the glucokinase activity but had little effect on fructokinase activity in the spinach chloroplast. Tryptic digestion of the Chlamydomonas chloroplast resulted in a loss of about 90% of glucokinase activity.  相似文献   

15.
Conversion to CO2 upon incubation in aerobic soil is one of the standard test procedures to assess biodegradability. It may be measured with unlabeled test compounds in biometer flasks. In this case, the background CO2 evolution by unamended soil is subtracted from the CO2 evolution by the amended soil and the resulting net CO2 evolution becomes the measure of biodegradation. Alternately, 14CO2 release from radiocarbon substrates is measured to assess biodegradability. Both approaches measure ultimate (complete) biodegradation and bypass the theoretical and technical limitations of residue analysis. This report examines the underlying assumptions that, except for carbon content, conversion percentage to CO2 is relatively independent of chemical composition, that CO2 production is proportional to the amount of added test compound, and that the background CO2 evolution of the soil is not influenced by the test substance. Work with unlabeled and radiolabeled substrates proved the first two assumptions to be essentially correct. However, more than half of net CO2 production may represent the mineralization of biomass and soil organic matter, some of it unrelated to the test compound. The soil microbial community in its nongrowing steady state appears to convert a much lower percentage of a radiocarbon substrate to 14CO2 than a growing soil community that responds to a substantial substrate addition. These findings may help to improve test methods and may aid in the interpretation of test results.  相似文献   

16.
Benzene was mineralized to CO2 by aquifer-derived microorganisms under strictly anaerobic conditions. The degradation occurred in microcosms containing gasoline-contaminated subsurface sediment from Seal Beach, California, and anaerobic, sulfide-reduced defined mineral medium supplemented with 20 mM sulfate. Benzene, at initial concentrations ranging from 40 to 200 microM, was depleted in all microcosms and more than 90% of 14C-labeled benzene was mineralized to 14CO2.  相似文献   

17.
Ecology of Sulfur-Oxidizing Bacteria in Hot Acid Soils   总被引:4,自引:2,他引:2       下载免费PDF全文
Hot acid soils in Yellowstone National Park are rich in elemental sulfur and harbor extensive populations of sulfur-oxidizing bacteria. Thiobacillus thiooxidans is found at temperatures below 55 C, and at temperatures from 55 to 85 C Sulfolobus acidocaldarius is present. The distribution of these bacteria as a function of temperature was measured by a most-probable-number dilution method, and their activity in situ was assessed by use of a new technique permitting measurement of (14)CO(2) fixation. From these data it is concluded that sulfur-oxidizing bacteria are responsible for production of sulfuric acid in these acidic thermal habitats. Physical and chemical parameters of this unusual soil habitat were also measured and are described.  相似文献   

18.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

19.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

20.
Oxidative determination of 14C-labeled 2-oxo acids   总被引:2,自引:0,他引:2  
A simple and rapid assay for the determination of 1-14C- or U-14C-labeled 2-oxo acids is described. It is based on the selective and complete oxidation of the carboxyl group to 14CO2. Preceding purification procedures are not necessary. In rat hindlimb perfusion studies, the procedure was used to develop an indirect method for the estimation of the intracellular dilution of [1-14C]pyruvate and to determine the relationship between the transamination and decarboxylation rates of leucine in the perfused tissue by the use of tracer doses of L-[1-14C]leucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号