首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
With the aim of investigating the mechanisms that maintain auxin homeostasis in plants, we have monitored the net uptake and metabolism of exogenously supplied indole-3-acetic acid (IAA) and naphthalene-1-acetic acid (NAA) in seedlings of wild type and the IAA-overproducing mutant sur1 of Arabidopsis thaliana . Tritiated IAA and NAA entered the seedling tissues within minutes and were mostly accumulated as metabolites, probably amino acid and sugar conjugates. The mutant seedlings were marked by a strong increase of [3H]IAA metabolism and a reduction of the accumulation levels of both free [3H]IAA and [3H]NAA. The same characteristics were observed in wild-type seedlings grown on 5 μ M picloram. We measured [3H]NAA uptake in the presence of high concentrations of unlabeled NAA or the auxin efflux carrier inhibitor naphthylphthalamic acid (NPA). This abolished the difference in free [3H]NAA accumulation between the mutant or picloram-treated seedlings and wild-type seedlings. These data indicated that active auxin efflux carriers were present in Arabidopsis seedling tissues. Picloram-treated seedlings and seedlings of the IAA-overproducing mutant sur1 displayed increased auxin efflux carrier activity as well as elevated conjugation of IAA. There is previous evidence to suggest that conjugation is a means to remove excess IAA in plant cells. Here, we discuss the possibility of efflux constituting an additional mechanism for regulating free IAA levels in the face of an excess auxin supply.  相似文献   

3.
Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation.  相似文献   

4.
We studied the effects of blue light (BL) on the levels of endogenous phytohormones (IAA, ABA, gibberellins, and cytokinins) and morphogenesis of the 7-day-old Arabidopsis thaliana(L.) Heynh seedlings of wild type (Ler) and its hy4mutant with a disturbed synthesis of cryptochrome 1 (CRY1), which is a receptor for BL. In darkness, the mutant contained considerably less free IAA and zeatin, but much more ABA as compared to the wild-type seedlings. BL retarded the hypocotyl growth in the wild-type seedlings but stimulated it in the mutant. Elongation of mutant hypocotyls was accompanied by accumulation of free IAA and a decrease in the content of free ABA; the level of cytokinins did not change. We believe that the response of the hy4hypocotyls to BL is mediated by a BL receptor distinct from cryptochrome 1. The conclusion is that light and hormonal signals interact in the control of the hypocotyl growth in A. thalianaseedlings.  相似文献   

5.
6.
High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.  相似文献   

7.
Unilateral application of indole-3-acetic acid (IAA) in a lanolin base to hypocotyls of partially etiolated seedlings of wild-type Arabidopsis thaliana induced growth curvature in a dose-dependent manner. The effects of IAA in concentrations from 1 to 1000 microM were studied, with maximum IAA-induced curvature at 100 microM. Three IAA-insensitive mutants were isolated and are all in the same locus, massugu1 (msg1). They did not undergo hypocotyl growth curvature at any of the IAA concentrations tested. msg1 is recessive and is located on chromosome 5. msg 1 hypocotyl growth is resistant to 2,4-dichlorophenoxyacetic acid (2,4-D), but the roots are as sensitive to 2,4-D as the wild type. Growth of the hypocotyl was inhibited to essentially the same extent as the wild type by 6-benzylaminopurine, abscisic acid, and 1-aminocyclopropane-1-carboxylate, an ethylene precursor. The msg1 leaves were also resistant to 2,4-D-induced chlorosis. The gravitropic response of the msg1 hypocotyl takes much more time to initiate and achieve the wild-type degree of curvature, whereas the msg1 roots responded normally to gravity. The mature plants and the etiolated seedlings of msg1 were generally wild type in appearance, except that their rosette leaves were either epinastic or hyponastic. msg1 is the first auxin-insensitive mutant in which it effects are mostly restricted to the hypocotyl and leaf, and msg1 also appears to be auxin specific.  相似文献   

8.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

9.
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCFTIR1/AFB-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots. Endogenous IAA levels in the auxin-signaling mutants axr2-1, axr3-3, and tir1-1afb1-1afb2-1afb3-1 also increased. Furthermore, YUCCA (YUC) gene expression was repressed in response to auxin treatment, and expression of YUC7 and YUC8 increased in response to PEO-IAA treatment. YUC genes were also induced in auxin-signaling mutants but repressed in TIR1-overexpression lines. These observations suggest that the endogenous IAA levels are regulated by auxin biosynthesis in a feedback manner, and the Aux/IAA and SCFTIR1/AFB-mediated auxin-signaling pathway regulates the expression of YUC genes.  相似文献   

10.
Mutants and wild type plants of Arabidopsis thaliana were analysed for differences in glucosinolate accumulation patterns, indole-3-acetic acid (IAA) biosynthesis and phenotype. A previously identified series of mutants, termed TU, with altered glucosinolate patterns was used in this study. Only the line TU8 was affected in shoot phenotype (shorter stems, altered branching pattern). Synthesis of IAA and metabolism were not much affected in the TU8 mutant during seedling development, although the content of free IAA peaked earlier in TU8 during plant development than in the wild type. Indole glucosinolates and IAA may, however, be involved in the development of clubroot disease caused by the obligate biotrophic fungus Plasmodiophora brassicae since the TU3 line had a lower infection rate than the wild type, and lines TU3 and TU8 showed decreased symptom development. The decline in clubroot formation was accompanied by a reduced number of fungal structures within the root cortex and slower development of the fungus. Indole glucosinolates were lower in infected roots of TU3 and TU8 than in control roots of these lines, whereas in wild-type plants the differences were not as prominent. Free IAA and indole-3-acetonitrile (IAN) were increased in infected roots of the wild type and mutants with normal clubroot symptoms, whereas they were reduced in infected roots of mutants TU3 and TU8. These results indicate a role for indole glucosinolates and IAN/IAA in relation to symptom development in clubroot disease. Received: 23 July 1998 / Accepted: 12 January 1999  相似文献   

11.
Müller A  Weiler EW 《Planta》2000,211(6):855-863
 The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of l-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the mutant hyperaccumulates the precursor indole-3-glycerophosphate (up to 10 mg per g FW). Instability of indole-3-glycerophosphate leads to release of indole-3-acetic acid (IAA) from this metabolite during standard workup of samples for determination of conjugated IAA. The apparent increase in “conjugated IAA” in trp3-1 mutant plants can be traced back entirely to indole-3-glycerophosphate degradation. Thus, the levels of neither free IAA nor conjugated IAA increase detectably in the trp3-1 mutant compared to wild-type plants. Precursor-feeding experiments to shoots of sterile-grown wild-type plants using [2H]5-l-tryptophan have shown incorporation of label from this precursor into indole-3-acetonitrile and indole-3-acetic acid with very little isotope dilution. It is concluded that Arabidopsis thaliana shoots synthesize IAA from l-tryptophan and that the non-tryptophan pathway is probably an artifact. Received: 1 March 2000 / Accepted: 10 April 2000  相似文献   

12.
High temperature is a general stress factor that causes a decrease in crop yield. It has been shown that auxin application reduces the male sterility caused by exposure to higher temperatures. However, widespread application of a hormone with vast effects on plant physiology may be discouraged in many cases. Therefore, the generation of new plant varieties that locally enhance auxin in reproductive organs may represent an alternative strategy. We have explored the possibility of increasing indole‐3‐acetic acid (IAA) in ovaries by reducing IAA methyltransferase1 (IAMT1) activity in Arabidopsis thaliana. The iamt1 mutant showed increased auxin signalling in funiculi, which correlated with a higher growth rate of wild‐type pollen in contact with mutant ovaries and premature ovule fertilization. While the production of seeds per fruit was similar in the wild type and the mutant at 20 °C, exposure to 29 °C caused a more severe decrease in fertility in the wild type than in the mutant. Loss of IAMT1 activity was also associated with the production of more nodes after flowering and higher tolerance of the shoot apical meristem to higher temperatures. As a consequence, the productivity of the iamt1 mutant under higher temperatures was more than double of that of the wild type, with almost no apparent trade‐off.  相似文献   

13.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

14.
Maize (Zea mays L. cv. Ganga-5) seedlings were grown in the presence of ferulic acid (0.5 – 3.0 mM) for 8 d. Treatment with ferulic acid considerably decreased shoot and root length, increased the activity of peroxidase, catalase and indole-3-acetic acid (IAA) oxidase and decreased the activity of polyphenol oxidase. The increased activity of peroxidase correlated with pronounced increase in content of lignin and phenolic compounds  相似文献   

15.
Jones SE  Demeo JS  Davies NW  Noonan SE  Ross JJ 《Planta》2005,222(3):530-534
The pin1-1 mutant of Arabidopsis thaliana has been pivotal for studies on auxin transport and on the role of auxin in plant development. It was reported previously that when whole shoots were analysed, levels of the major auxin, indole-3-acetic acid (IAA) were dramatically reduced in the mutant, compared with the WT (Okada et al. 1991). The cloning of PIN1, however, provided evidence that this gene encodes a facilitator of auxin efflux, raising the question of how the pin1-1 mutation might reduce overall IAA levels as well as IAA transport. We therefore re-examined IAA levels in individual parts of pin1-1 and WT plants, focusing on inflorescence stems. Our data show that there is in fact no systemic IAA deficiency in the mutant. The previously reported difference between mutant and WT may have been due to the inclusion of reproductive structures in the WT harvest: we show here that the inflorescence itself contains high levels of IAA. We reconcile the normal IAA levels of pin1-1 inflorescence stems with their (previously-reported) reduced ability to transport IAA by presenting evidence that the auxin in mutant stems is not imported from their apical portion. Our data also indicate that levels of another auxin, indole-3-butyric acid (IBA), are very low in stems of the genotypes used in this study.  相似文献   

16.
The synthesis of indole-3-acetic acid (IAA) in the enzyme extracts of Nicotiana glauca, Nicotiana langsdorffii, their F1 hybrid, their amphidiploid hybrid, and the nontumorous mutant of the hybrid was investigated. Tryptamine, a possible precursor of IAA biosynthesis in Nicotiana tabacum, was not found in the callus tissue of N. glauca, N. langsdorffii, and their F1 hybrid.

In petiole slices, the synthesis of IAA progressively increased during 5 hours of incubation in [14C]tryptophan. The rate of synthesis was about equal in the hybrid and N. langsdorffii but lower in N. glauca on either a cell or fresh weight basis. It was also found that tryptophan was about 25 times more efficient than tryptamine in promoting synthesis of IAA in petiole slices.

It was found that indoleacetaldehyde oxidase, indoleacetaldehyde reductase, and tryptophan aminotransferase activities were present in all of the species examined; however, tryptophan decarboxylase activity was not found. The tryptophan aminotransferase activity in N. glauca, N. langsdorffii, and the nontumorous mutant required α-ketoglutaric acid and pyridoxal 5-phosphate whereas the addition of pyridoxal 5-phosphate seemed not to increase the enzyme activity in tumor plants.

The tryptophan aminotransferase in the amphidiploid hybrid was partially purified by acetone precipitation. The enzyme activity had a temperature optimum at 49 C and a pH optimum at 8.9. It is suggested that there is an indolepyruvic acid pathway in the synthesis of IAA in the Nicotiana species examined.

  相似文献   

17.
Phytohormones are involved in the organogenesis of legume root nodules. The source of the auxin indole-3-acetic acid (IAA) in nodules has not been clearly determined. We studied the enzyme aldehyde oxidase (AO; EC 1.2.3.1), that catalyzes the last step of IAA biosynthesis in plants, in the nodules of Lupinus albus and Medicago truncatula. Primordia and young lupin nodules and mature M. truncatula nodules showed AO activity bands after native polyacrylamide gel electrophoresis. Gel activity analyses using indole-3-aldehyde as substrate indicated that the nodules of white lupin and M. truncatula have the capability to synthesize IAA via the indole-3-pyruvic acid pathway. Immunolocalization and in situ hybridization experiments revealed that AO is preferentially expressed in the meristematic and the invasion zones in Medicago nodules and in the lateral meristematic zone of Lupinus nodules. High IAA immunolabeling was also detected in the meristematic and invasion zones. Low expression levels and no AO activity were detected in lupin Fix- nodules that displayed restricted growth and early senescence. We propose that local synthesis of IAA in the root nodule meristem and modulation of AO expression and activity are involved in regulation of nodule development.  相似文献   

18.
The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.  相似文献   

19.
The accumulation of conjugates of indole-3-acetic acid (IAA) in Arabidopsis thaliana was studied by incubating tissues with high concentrations of exogenous IAA, followed by reverse phase HPLC analysis of the extracts. Using fluorescence detection, indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose were observed and quantitated in extracts of tissue after 24 h incubation with 500 μ M IAA. In addition, a new metabolite was detected and positively identified as indole-3-acetyl-glutamine by fast atom bombardment mass spectrometry, exact mass measurement, and tandem mass spectrometry in comparison with a synthetic standard. The amounts of individual conjugates formed differed between leaves, shoot axes and roots. In all three tissues, indole-3-acetyl-aspartate was the most abundant conjugate, the highest level being observed in roots. Highest levels of indole-3-acetyl-glutamine were observed in leaves, where it was the second most abundant conjugate and comprised approximately 12% of the fluorescent metabolites. Accumulation of the three amide conjugates was dramatically inhibited by cycloheximide, whereas accumulation of indole-3-acetyl-glucose was little affected. Based on these data, a screen for Arabidopsis mutants altered in the IAA-inducible system for auxin conjugate formation was initiated. The first mutant to be isolated and characterized produces more indole-3-acetyl-glutamine and less indole-3-acetyl-aspartate than wild-type, and is allelic to an existing class of photorespiration mutants ( gluS ) deficient in chloroplastic glutamate synthase.  相似文献   

20.
A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号