首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major histocompatibility complex (MHC) molecules have been implicated in a number of non-immune roles in the central nervous system, particularly in synaptic development and plasticity. The discovery of M10 (50% sequence identity to classical MHC molecules) proteins expressed in the vomeronasal organ adds to the list of non-traditional roles of MHC homologs. M10 molecules associate with the V2R class of vomeronasal receptors, a family of G-protein coupled receptors thought to function as pheromone receptors. Recent studies showing that classical MHC-binding peptides activate V2R-expressing neurons offer tempting clues that M10s might participate directly in the recognition of pheromone ligands, but M10 proteins do not bind to these peptides with significant affinity. Instead of presenting MHC-binding peptides, M10s might function as molecular chaperones to V2R receptors or more generally as modulators of neuronal function, as demonstrated elsewhere in the brain for classical MHC molecules.  相似文献   

2.
The biological properties of the nonclassical class I MHC molecules secreted into blood and tissue fluids are not currently understood. To address this issue, we studied the murine Q10 molecule, one of the most abundant, soluble class Ib molecules. Mass spectrometry analyses of hybrid Q10 polypeptides revealed that alpha1alpha2 domains of Q10 associate with 8-9 long peptides similar to the classical class I MHC ligands. Several of the sequenced peptides matched intracellularly synthesized murine proteins. This finding and the observation that the Q10 hybrid assembly is TAP2-dependent supports the notion that Q10 groove is loaded by the classical class I Ag presentation pathway. Peptides eluted from Q10 displayed a binding motif typical of H-2K, D, and L ligands. They carried conserved residues at P2 (Gly), P6 (Leu), and Pomega (Phe/Leu). The role of these residues as anchors/auxiliary anchors was confirmed by Ala substitution experiments. The Q10 peptide repertoire was heterogeneous, with 75% of the groove occupied by a multitude of diverse peptides; however, 25% of the molecules bound a single peptide identical to a region of a TCR V beta-chain. Since this peptide did not display enhanced binding affinity for Q10 nor does its origin and sequence suggest that it is functionally significant, we propose that the nonclassical class I groove of Q10 resembles H-2K, D, and L grooves more than the highly specialized clefts of nonclassical class I Ags such as Qa-1, HLA-E, and M3.  相似文献   

3.
The vomeronasal organ (VNO) of the mouse has two neuronal compartments expressing distinct families of pheromone receptors, the V1Rs and the V2Rs. We report here that two families of major histocompatibility complex (MHC) class Ib molecules, the M10 and the M1 families, show restricted expression in V2R-expressing neurons. Our data suggest that neurons expressing a given V2R specifically co-express one or a few members of the M10 family. Biochemical and immunocytochemical analysis demonstrates that in VNO sensory dendrites M10s belong to large multi-molecular complexes that include pheromone receptors and beta2-microglobulin (beta2m). In cultured cells, M10s appear to function as escort molecules in transport of V2Rs to the cell surface. Accordingly, beta2m-deficient mice exhibit mislocalization of V2Rs in the VNO and a specific defect in male-male aggressive behavior. The functional characterization of M10 highlights an unexpected role for MHC molecules in pheromone detection by mammalian VNO neurons.  相似文献   

4.
Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.  相似文献   

5.
Viral antigens complexed with major histocompatibility complex (MHC) class I molecules are recognized by cytotoxic T lymphocytes on infected cells. Assays with synthetic peptides identify optimal MHC class I ligands often used for vaccines. However, when natural peptides are analyzed, more complex mixtures including long peptides bulging in the middle of the binding site or with carboxyl extensions are found, reflecting lack of exposure to carboxypeptidases in the antigen processing pathway. In contrast, precursor peptides are exposed to extensive cytosolic aminopeptidase activity, and fewer than 1% survive, only to be further trimmed in the endoplasmic reticulum. We show here a striking example of a nested set of at least three highly antigenic and similarly abundant natural MHC class I ligands, 15, 10, and 9 amino acids in length, derived from a single human immunodeficiency virus gp160 epitope. Antigen processing, thus, gives rise to a rich pool of possible ligands from which MHC class I molecules can choose. The natural peptide set includes a 15-residue-long peptide with unprecedented 6 N-terminal residues that most likely extend out of the MHC class I binding groove. This 15-mer is the longest natural peptide known recognized by cytotoxic T lymphocytes and is surprisingly protected from aminopeptidase trimming in living cells.  相似文献   

6.
Tapasin plays an important role in the quality control of major histocompatibility complex (MHC) class I assembly, but its precise function in this process remains controversial. Whether tapasin participates in the assembly of HLA-G has not been studied. HLA-G, an MHC class Ib molecule that binds a more restricted set of peptides than class Ia molecules, is a particularly interesting molecule, because during assembly, it recycles between the endoplasmic reticulum (ER) and the cis-Golgi until it is loaded with a high affinity peptide. We have taken advantage of this unusual trafficking property of HLA-G and its requirement for high affinity peptides to demonstrate that a critical function of tapasin is to transform class I molecules into a high affinity, peptide-receptive form. In the absence of tapasin, HLA-G molecules cannot bind high affinity peptides, and an abundant supply of peptides cannot overcome the tapasin requirement for high affinity peptide loading. The addition of tapasin renders HLA-G molecules capable of loading high affinity peptides and of transporting to the surface, suggesting that tapasin is a prerequisite for the binding of high-affinity ligands. Interestingly, the "tapasin-dependent" HLA-G molecules are not empty in the absence of tapasin but are in fact associated with suboptimal peptides and continue to recycle between the ER and the cis-Golgi. Together with the finding that empty HLA-G heterodimers are strictly retained in the ER and degraded, our data suggest that MHC class I molecules bind any available peptides to avoid ER-mediated degradation and that the peptides are in turn replaced by higher affinity peptides with the aid of tapasin.  相似文献   

7.
8.
MHC class I molecules assemble with peptides in the endoplasmic reticulum (ER). To ensure that only peptide-loaded MHC molecules leave the ER, empty molecules are retained by ER-resident chaperones, most notably the MHC-specific tapasin. ER exit of class I MHC is also controlled by viruses, but for the opposite purpose of preventing peptide presentation to T cells. Interestingly, some viral proteins are able to retain MHC class I molecules in the ER despite being transported. By contrast, other viral proteins exit the ER only upon binding to class I MHC, thereby rerouting newly synthesized class I molecules to intracellular sites of proteolysis. Thus, immune escape can be achieved by reversing, inhibiting or redirecting the chaperone-assisted MHC class I folding, assembly and intracellular transport.  相似文献   

9.
We report on molecular dynamics simulations of major histocompatibility complex (MHC)-peptide complexes. Class I MHC molecules play an important role in cellular immunity by presenting antigenic peptides to cytotoxic T cells. Pockets in the peptide-binding groove of MHC molecules accommodate anchor side chains of the bound peptide. Amino acid substitutions in MHC affect differences in the peptide-anchor motifs. HLA-A*0217, human MHC class I molecule, differs from HLA-A*0201 only by three amino acid residues substitutions (positions 95, 97, and 99) at the floor of the peptide-binding groove. A*0217 showed a strong preference for Pro at position 3 (p3) and accepted Phe at p9 of its peptide ligands, but these preferences have not been found in other HLA-A2 ligands. To reveal the structural mechanism of these observations, the A*0217-peptide complexes were simulated by 1000 ps molecular dynamics at 300 K with explicit solvent molecules and compared with those of the A*0201-peptide complexes. We examined the distances between the anchor side chain of the bound peptide and the pocket, and the rms fluctuations of the bound peptides and the HLA molecules. On the basis of the results from our simulations, we propose that Pro at p3 serves as an optimum residue to lock the dominant anchor residue (p9) tightly into pocket F and to hold the peptide in the binding groove, rather than a secondary anchor residue fitting optimally the complementary pocket. We also found that Phe at p9 is used to occupy the space created by replacements of three amino acid residues at the floor within the groove. These findings would provide a novel understanding in the peptide-binding motifs of class I MHC molecules.  相似文献   

10.
DM catalyzes the exchange of peptides bound to Class II major histocompatibility complex (MHC) molecules. Because the dissociation and association components of the overall reaction are difficult to separate, a detailed mechanism of DM catalysis has long resisted elucidation. UV irradiation of DR molecules loaded with a photocleavable peptide (caged Class II MHC molecules) enabled synchronous and verifiable evacuation of the peptide-binding groove and tracking of early binding events in real time by fluorescence polarization. Empty DR molecules generated by photocleavage rapidly bound peptide but quickly resolved into species with substantially slower binding kinetics. DM formed a complex with empty DR molecules that bound peptide with even faster kinetics than empty DR molecules just having lost their peptide cargo. Mathematical models demonstrate that the peptide association rate of DR molecules is substantially higher in the presence of DM. We therefore unequivocally establish that DM contributes directly to peptide association through formation of a peptide-loading complex between DM and empty Class II MHC. This complex rapidly acquires a peptide analogous to the MHC class I peptide-loading complex.  相似文献   

11.
Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.  相似文献   

12.
RMA-S cells do not express functional TAP, yet they express MHC class I molecules at the cell surface, especially at reduced temperatures (26 degrees C). It is generally assumed that such class I molecules are "empty," devoid of any associated peptide. A radiochemical approach was used to label class I-associated peptides and to determine the extent to which Kb molecules in RMA-S cells are associated with peptides. These studies revealed that at 26 degrees C Kb molecules in RMA-S cells are occupied with self-peptides. Such peptides stably associate with Kb at 26 degrees C but easily dissociate from them at 37 degrees C, suggesting low-affinity interactions between Kb and the associated peptides. At 26 degrees C, at least some of these Kb molecules are stably expressed in a peptide-receptive state on the cell surface, whereas at 37 degrees C they are short lived and are only transiently capable of binding and presenting exogenously supplied OVA 257-264 peptide for presentation to CD8+ Kb-restricted T lymphocytes. Thus contrary to current models of class I assembly in TAP-deficient RMA-S cells, the presumably "empty" molecules are in fact associated with peptides at 26 degrees C. Together, our data support the existence of an alternative mechanism of peptide binding and display by MHC class I molecules in TAP-deficient cells that could explain their ability to present Ag.  相似文献   

13.
Antigenic peptide binding to MHC class II molecules in the endocytic pathway occurs via a multifactorial process that requires the support of a specialized lysosomal chaperone called HLA-DM. DM shows both in primary amino acid sequence and quaternary structure a high homology to both MHC class I and class II molecules. Like the peptide presenting class II molecules, DM is expressed in all professional antigen presenting cells. DM catalyzes the dissociation of peptides that do not bind stably to the class II peptide-binding groove, thereby leading to the preferential presentation of stably binding antigenic peptides. The recently discovered HLA-DO molecule is mainly expressed in B cells and associates with DM, thereby markedly affecting DM function. Like DM, the genes encoding the HLA-DO heterodimer lie within the MHC class II region and exhibit strong homology to classical class II molecules. This review evaluates the unique effects of DO on DM-mediated antigen presentation by MHC class II molecules and discusses the possible physiological relevance for the B cell-specific expression of DO and its function.  相似文献   

14.
The immune defences of our organism against pathogens and malignant transformation rely to a large extent on surveillance by cytotoxic T lymphocytes. This surveillance in turn depends on the antigen processing system, which provides peptide samples of the cellular protein composition to MHC (major histocompatibility complex) class I molecules displayed on the cell surface. To continuously and almost in real time provide a representative sample of the array of proteins synthesized by the cell, this system exploits some fundamental pathways of the cellular metabolism, with the help of several dedicated players acting exclusively in antigen processing. Thus, a key element in the turnover of cellular proteins, protein degradation by cytosolic proteasome complexes, is exploited as source of peptides, by recruiting a minor fraction of the produced peptides as ligands for MHC class I molecules. These peptides can be further processed and adapted to the precise binding requirements of allelic MHC class I molecules by enzymes in the cytosol and endoplasmic reticulum. The latter compartment is equipped with several dedicated players helping peptide assembly with class I molecules. These include the TAP (transporter associated with antigen processing) membrane transporter pumping peptides into the ER, and tapasin, a chaperone with a structure similar to MHC molecules that tethers class I molecules awaiting peptide loading to the TAP transporter, and mediates optimization of MHC class I ligand by a still somewhat mysterious mechanism. Additional "house-keeping" chaperones that are known to act in concert in ER quality control, assist and control correct folding, oxidation and assembly of MHC class I molecules. While this processing system handles exclusively endogenous cellular proteins in most cells, dendritic cells employ one or several special pathways to shuttle exogenous, internalized proteins into the system, in a process referred to as cross-presentation. Deciphering the cell biological mechanism creating the link between the endosomal and secretory pathways that enables cross-presentation is one of the challenges faced by contemporary research in the field of MHC class I antigen processing.  相似文献   

15.
Zn-alpha(2)-glycoprotein (ZAG) is a member of the major histocompatibility complex (MHC) class I family of proteins and is identical in amino acid sequence to a tumor-derived lipid-mobilizing factor associated with cachexia in cancer patients. ZAG is present in plasma and other body fluids, and its natural function, like leptin's, probably lies in lipid store homeostasis. X-ray crystallography has revealed an open groove between the helices of ZAG's alpha(1) and alpha(2) domains, containing an unidentified small ligand in a position similar to that of peptides in MHC proteins (Sanchez, L. M., Chirino, A. J., and Bjorkman, P. J. (1999) Science 283, 1914-1919). Here we show, using serum-derived and bacterial recombinant protein, that ZAG binds the fluorophore-tagged fatty acid 11-(dansylamino)undecanoic acid (DAUDA) and, by competition, natural fatty acids such as arachidonic, linolenic, eicosapentaenoic, and docosahexaenoic acids. Other MHC class I-related proteins (FcRn, HFE, HLA-Cw*0702) showed no such evidence of binding. Fluorescence and isothermal calorimetry analysis showed that ZAG binds DAUDA with K(d) in the micromolar range, and differential scanning calorimetry showed that ligand binding increases the thermal stability of the protein. Addition of fatty acids to ZAG alters its intrinsic (tryptophan) fluorescence emission spectrum, providing a strong indication that ligand binds in the expected position close to a cluster of exposed tryptophan side chains in the groove. This study therefore shows that ZAG binds small hydrophobic ligands, that the natural ligand may be a polyunsaturated fatty acid, and provides a fluorescence-based method for investigating ZAG-ligand interactions.  相似文献   

16.
The finding that MHC class I molecules are physically associated with the TAP transporter has suggested that peptides may be directly transported into the binding groove of the class I molecules rather than into the lumen of the endoplasmic reticulum (ER) where they subsequently would encounter class I molecules by diffusion. Such a mechanism would protect peptides from peptidases in the ER and/or escaping back into the cytoplasm. However, we find that an anti-peptide Ab that is cotranslationally transported into the ER prevents TAP-transported peptides from being presented on class I molecules. The Ab only blocks the binding of its cognate peptide (SIINFEKL) but not other peptides (KVVRFKDL, ASNENMETM, and FAPGNYPAL). Therefore, most TAP-transported peptides must diffuse through the lumen of the ER before binding stably to MHC class I molecules.  相似文献   

17.
H2-M3 is a class Ib MHC molecule that binds a highly restricted pool of peptides, resulting in its intracellular retention under normal conditions. However, addition of exogenous M3 ligands induces its escape from the endoplasmic reticulum (ER) and, ultimately, its expression at the cell surface. These features of M3 make it a powerful and novel model system to study the potentially interrelated functions of the ER-resident class I chaperone tapasin. The functions ascribed to tapasin include: 1) ER retention of peptide-empty class I molecules, 2) TAP stabilization resulting in increased peptide transport, 3) direct facilitation of peptide binding by class I, and 4) peptide editing. We report in this study that M3 is associated with the peptide-loading complex and that incubation of live cells with M3 ligands dramatically decreased this association. Furthermore, high levels of open conformers of M3 were efficiently retained intracellularly in tapasin-deficient cells, and addition of exogenous M3 ligands resulted in substantial surface induction that was enhanced by coexpression of either membrane-bound or soluble tapasin. Thus, in the case of M3, tapasin directly facilitates intracellular peptide binding, but is not required for intracellular retention of open conformers. As an alternative approach to define unique aspects of M3 biosynthesis, M3 was expressed in human cell lines that lack an M3 ortholog, but support expression of murine class Ia molecules. Unexpectedly, peptide-induced surface expression of M3 was observed in only one of two cell lines. These results demonstrate that M3 expression is dependent on a unique factor compared with class Ia molecules.  相似文献   

18.
Identification of peptides presented in major histocompatibility complex (MHC) class I molecules after viral infection is of strategic importance for vaccine development. Until recently, mass spectrometric identification of virus-induced peptides was based on comparative analysis of peptide pools isolated from uninfected and virus-infected cells. Here we report on a powerful strategy aiming at the rapid, unambiguous identification of naturally processed MHC class I-associated peptides, which are induced by viral infection. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues (i.e. residues of the peptide that have amino acid side chains that bind into pockets lining the peptide-binding groove of the MHC class I molecule) for the human leukocyte antigen allele of interest. Subsequently these cells are mixed with an equal number of non-infected cells, which are cultured in normal medium. Finally peptides are acid-eluted from immunoprecipitated MHC molecules and subjected to two-dimensional nanoscale LC-MS analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules. Using this approach we identified novel measles virus and respiratory syncytial virus epitopes as well as infection-induced self-peptides in several cell types, showing that SITE is a unique and versatile method for unequivocal identification of disease-related MHC class I epitopes.  相似文献   

19.
The loading of MHC class I molecules with peptides involves a variety of accessory proteins, including TAP-associated glycoprotein (tapasin), which tethers empty MHC class I molecules to the TAP peptide transporter. We have evaluated the role of tapasin for the assembly of peptides with the class Ib molecule Qa-1b. In normal cells, Qa-1b is predominantly bound by a peptide, the Qa-1 determinant modifier (Qdm), derived from the signal sequence of class Ia molecules. Our results show that tapasin links Qa-1b to the TAP peptide transporter, and that tapasin facilitates the delivery of Qa-1b molecules to the cell surface. Tapasin was also required for the presentation of endogenous Qdm peptides to Qdm-specific, Qa-1b-restricted CTLs. In sharp contrast, tapasin expression was dispensable for the presentation of an insulin peptide to insulin-specific, Qa-1b-restricted CTL isolated from TCR transgenic mice. However, tapasin deficiency significantly impaired the positive selection of these insulin-specific, Qa-1b-restricted transgenic CD8+ T cells. These findings reveal that tapasin plays a differential role in the loading of Qdm and insulin peptides onto Qa-1b molecules, and that tapasin is dispensable for retention of empty Qa-1b molecules in the endoplasmic reticulum, and are consistent with the proposed peptide-editing function of tapasin.  相似文献   

20.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号