首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated physiological and biochemical factors associated with the improved work capacity of trained iron-deficient rats. Female 21-day-old rats were assigned to one of four groups, two dietary groups (50 and 6 ppm dietary iron) subdivided into two levels of activity (sedentary and treadmill trained). Iron deficiency decreased hemoglobin (61%), maximal O2 uptake. (VO2max) (40%), skeletal muscle mitochondrial oxidase activities (59-90%), and running endurance (94%). In contrast, activities of tricarboxylic acid (TCA) cycle enzymes in skeletal muscle were largely unaffected. Four weeks of mild training in iron-deficient rats resulted in improved blood lactate homeostasis during exercise and increased VO2max (15%), TCA cycle enzymes of skeletal muscle (27-58%) and heart (29%), and liver NADH oxidase (34%) but did not affect any of these parameters in the iron-sufficient animals. In iron-deficient rats training affected neither the blood hemoglobin level nor any measured iron-dependent enzyme pathway of skeletal muscle but substantially increased endurance (230%). We conclude that the training-induced increase in endurance in iron-deficient rats may be related to cardiovascular improvements, elevations in liver oxidative capacity, and increases in the activities of oxidative enzymes that do not contain iron in skeletal and cardiac muscle.  相似文献   

2.
The effects of 8 weeks of bicycle endurance training (5 X /week for 30 min) on maximal oxygen uptake capacity (VO2max) during arm and leg ergometry, and on the ultrastructure of an untrained arm muscle (m. deltoideus), and a trained leg muscle (m. vastus lateralis) were studied. With the training, leg-VO2max for bicycling increased by +13%, while the capillary per fiber ratio and the volume density of mitochondria in m. vastus lateralis increased by +15% and +40%, respectively. In contrast, the untrained m. deltoideus showed an unchanged capillary per fiber ratio and a decreased mitochondrial volume density (-17%). Despite this decrease of mitochondrial volume arm-VO2max increased by +9%. It seems unlikely that the observed discrepancy can be explained by cardiovascular adaptations, since arm cranking did not fully tax the cardiovascular system (arm-VO2max/leg-VO2max: 0.74 and 0.71 before and after training, respectively). Thus neither cardiovascular adaptations nor local structural changes in the untrained muscles could explain the increased arm-VO2max. However, the enhanced capacity for lactate clearance after endurance training could be sufficient to account for the larger VO2max during arm cranking. We propose that an increased net oxidation of lactate might be responsible for the increased arm-VO2max found after bicycle endurance training.  相似文献   

3.
The effect of iron deficiency on work capacity was studied in groups of rats that had received diets with iron contents ranging between 9 and 50 mg/kg diet from 3 to 6 wk of age. Maximal O2 consumption (VO2max) declined only 16% with a decrease in hemoglobin (Hb) from 14 to 8 g/dl and fell sharply only below a Hb of 7 g/dl. Duration until exhaustion in a treadmill exercise of submaximal intensity (endurance) showed no significant depression between a Hb of 14 and 10 g/dl. However, endurance declined abruptly by 73% between a Hb of 10 and 8 g/dl. The VO2max results are in accord with known compensatory mechanisms that help to maintain delivery of O2 to tissues until anemia becomes severe. The sharp fall in endurance with relatively mild iron deficiency suggests a lack of similarly effective compensations for decreased oxidative capacity of muscle.  相似文献   

4.
Before the start and after 4, 8, and 12 wk of a treadmill training program male rats were randomly selected and tested for running performance, maximum O2 consumption (VO2 max), running economy (VO2 submax), and skeletal muscle oxidative capacity (QO2). Data were compared with values from untrained weight-matched control rats. Maximum running time to exhaustion increased significantly (P less than 0.01) by 4 wk and again at 12 wk (P less than 0.01). Submaximal running endurance increased by 120 (4 wk), 320 (8 wk), and 372% (12 wk) (P less than 0.01). VO2 max was increased only at 12 wk (86.0 +/- 2.7 vs. 75.5 +/- 1.9 ml O2.kg-1.min-1); VO2 submax was decreased at 4 and 8 wk but not at 12 wk. Soleus QO2 was unchanged after 4 wk of training and increased by 50% at 8 wk and by 77% at 12 wk. This study is the first to show a dissociation in both the time course and the magnitude of longitudinal changes in VO2 max, VO2 submax, QO2, and maximal and submaximal running performance. We conclude that factors other than those measured explain the improvement in running performance that resulted from endurance training in these rats.  相似文献   

5.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

7.
The purpose of this study was to determine the effect of endurance exercise training on the time course of the increase in VO2 toward steady state in response to submaximal constant load work. Seven men participated in a strenuous program of endurance exercise for 40 min/day, 6 days/wk for 10 wk. Their average VO2max increased from 3.29 liters before training to 4.53 liters at the end of the training program. VO2 was measured continuously on a breath-by-breath basis at work rates requiring 40%, 50%, 60%, or 70% of VO2max before training. After training the subjects were retested both at the same absolute and the same relative work rates. The increases in VO2 toward steady state occurred more rapidly in the trained than in the untrained state both at the same absolute and at the same relative work rates. The finding that O2 uptake rises to meet O2 demand more rapidly in the trained than in the untrained state provides evidence that the working muscles become less hypoxic at the onset of exercise of the same intensity after training.  相似文献   

8.
This study was conducted to obtain additional information about the adaptations after 12 wk of high-fat diet (HFD) per se or HFD combined with endurance training in the rat using a two [diet: carbohydrate (CHO) or HFD] by two (training: sedentary or trained) by two (condition at death: rested or exercised) factorial design. Adaptation to prolonged HFD increases maximal O2 uptake (VO2max; 13%, P less than 0.05) and submaximal running endurance (+64%, P less than 0.05). This enhancement in exercise capacity could be attributed to 1) an increase in skeletal muscle aerobic enzyme activities (3-hydroxyacyl-CoA dehydrogenase and citrate synthase in soleus and red quadriceps) or 2) a decrease in liver glycogen breakdown in response to 1 h exercise at 80% VO2max. When training is superimposed to HFD, the most prominent finding provided by this study is that the diet-induced effects are cumulative with the well-known training effect on VO2max, exercise endurance, oxidative capacity of red muscle, and metabolic responses to exercise, with a further reduction in liver glycogen breakdown.  相似文献   

9.
Old rats have a decreased hindlimb muscle respiratory capacity and whole-body maximal O2 consumption (VO2 max). The decline in spontaneous physical activity in old rats might contribute to these age-related changes. The magnitude of the age-related decline is not uniform in all skeletal muscle respiratory enzymes, and the decrease in palmitate oxidation is particularly great. This study was designed to determine if young and old rats subjected to the same exercise-training protocol would attain similar values for VO2 max and several markers of muscle respiratory capacity. Four- and 18-mo-old Fischer 344 rats underwent an identical 6-mo program of treadmill running. After training, both age groups had increased VO2 max above sedentary age-matched controls. However, the old trained rats had a lower VO2 max than identically trained young rats. In contrast to VO2 max, the two trained groups attained similar values for gastrocnemius citrate synthase, cytochrome oxidase, 3-hydroxyacyl-CoA dehydrogenase, palmitate oxidation, and total carnitine concentration. Thus, when the young and old rats performed an identical exercise protocol within the capacity of the old animals, differences in skeletal muscle respiratory capacity were eliminated. The dissimilarity in VO2 max between the identically trained groups was apparently caused by age-related differences in factors other than muscle respiratory capacity.  相似文献   

10.
Ventilation with O2 was previously shown to decrease whole-body and hindlimb muscle O2 uptake (VO2) in anesthetized dogs, particularly during anemia. To determine whether this was a purely local effect of hyperoxia (HiOx), we pump perfused isolated dog hindlimb muscles with autologous blood made hyperoxic (PO2 greater than 500 Torr) in a membrane oxygenator while the animals were ventilated with room air. Both constant-flow and constant-pressure protocols were used, and half the dogs were made anemic by exchange transfusion of dextran to hematocrit (Hct) approximately 15%. Thus there were four groups of n = 6 dogs each. A 30-min period of HiOx was preceded and followed by similar periods of perfusion with normoxic blood. In HiOx all four groups showed increased leg hindrance, increased leg venous PO2, and no significant changes in leg O2 inflow. Limb blood flow and VO2 decreased approximately 20% in HiOx with constant-pressure perfusion, regardless of Hct. In the constant-flow protocol, leg VO2 in HiOx was maintained by the anemic animals and actually increased in the normocythemic group. We conclude that HiOx directly affected vascular smooth muscle to cause flow restriction and maldistribution. Constant flow offset these effects, but the increased limb VO2 may have been a toxic effect. Anemia appeared to exaggerate the microcirculatory maldistribution caused by HiOx.  相似文献   

11.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

12.
Moderate physical training is often associated with improved cardiorespiratory fitness in athletes and the general population. In animals, studies are designed to investigate basic physiology that could be invasive and uncomfortable for humans. The standardization of an exercise training protocol for rats based on maximal consumption of oxygen (VO(2)max) is needed. This study validated a program of moderate physical training for Wistar rats based on VO(2)max determined once a week. A 10-stage treadmill running test was developed to measure VO(2)max through an indirect, open circuit calorimeter. Thirty male Wistar rats (210-226 g) were randomly assigned to either a nontrained group or a trained group. The animals were evaluated weekly to follow their VO(2)max during 8 weeks of moderate training and to adjust the intensity of the protocol of training. The soleus muscle was removed for determination of citrate synthase activity. Trained animals maintained their values of VO(2)max during a moderate running training and showed a significant less body weight gain. An increase of 42% in citrate synthase activity of the soleus muscle from trained rats was found after the training program. Our study presents a protocol of moderate physical training for Wistar rats based on VO(2)max. Peripheral adaptations such as the values of citrate synthase activity also responded to the moderate training program imposed as observed for VO(2)max. Other studies can use our protocol of moderate training to study the physiologic adaptations underlying this specific intensity of training. It will provide support for study with humans.  相似文献   

13.
Kenyan dominance in distance running   总被引:3,自引:0,他引:3  
Critical physiological factors for performance in running are maximal oxygen consumption (VO(2max)), fractional VO(2max) utilization and running economy. While Kenyan and Caucasian elite runners are able to reach very high, but similar maximal oxygen uptake levels, the VO(2max) of black South African elite runners seems to be slightly lower. Moreover, the studies of black and white South African runners indicate that the former are able to sustain the highest fraction of VO(2max) during long distance running. Results on adolescent Kenyan and Caucasian boys show that these boys are running at a similar percentage of VO(2max) during competition. Kenyan elite runners, however, appear to be able to run at a high % of VO(2max) which must then have been achieved by training. A lower energy cost of running has been demonstrated in Kenyan elite runners and in untrained adolescent Kenyan boys compared to their Caucasian counterparts. In agreement with this are the results from studies on black South African elite runners who have shown similar low energy costs during running as the Kenyan elite runners. The good running economy cannot be explained by differences in muscle fibre type as they are the same in Kenyan and Caucasian runners. The same is true when comparing untrained adolescent Kenyan boys with their Caucasian counterparts. A difference exists in BMI and body shape, and the Kenyans long, slender legs could be advantageous when running as the energy cost when running is a function of leg mass. Studies comparing the response to training of Kenyans and Caucasians have shown similar trainability with respect to VO(2max), running economy and oxidative enzymes. Taken all these data together it appears that running at a high fractional VO(2max) and having a good running economy may be the primary factors favouring the good performance of endurance athletes rather than them having a higher VO(2max) than other elite runners. In addition to having the proper genes to shape their bodies and thereby contributing to a good running economy, the Kenyan elite runners have trained effectively and used their potential to be in the upper range both in regard to VO(2max) and to a high utilization of this capacity during endurance running.  相似文献   

14.
The purpose of the present study was to examine to what degree a reduction in systemic oxygen transport capacity influences the absolute and relative levels (% of maximal oxygen uptake) of submaximal blood lactate accumulation. Anemia was induced by repeated venesections in eight healthy males. After 9-10 weeks of anemia, hemoglobin concentration [Hb] was restored by retransfusion of packed erythrocytes. The [Hb] values obtained were, before venesections, in control (C) = 145 +/- 10, in the anemic state (A) = 110 +/- 8, and after retransfusion (R) = 143 +/- 8 g X l-1 respectively. In all states, muscle biopsies were taken and measurements made of VO2max and VO2 at a running velocity corresponding to a blood lactate concentration of 4 mM (upsilon Hla 4.0). In the A condition Vo2max decreased by 19% as compared to C (P less than 0.01). upsilon Hla 4.0 was 14% lower in A as compared to C and R (p less than 0.01). VO2 at upsilon Hla 4.0 was 13% lower in A as compared to C (P less than 0.01). However, VO2 at upsilon Hla 4.0 expressed as a percentage of VO2max was increased (P less than 0.01) in the anemic state, the values obtained being C = 83.3%, A = 89.8% and R = 84.8%. Ventilation at upsilon Hla 4.0 was higher in A as compared to C and R (P less than 0.05). R and C values were not significantly different for any of the values presented above. The maximal activity of citrate synthase in muscle did not differ between the three different conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.  相似文献   

16.
Despite many reports of long-lasting elevation of metabolism after exercise, little is known regarding the effects of exercise intensity and duration on this phenomenon. This study examined the effect of a constant duration (30 min) of cycle ergometer exercise at varied intensity levels [50 and 70% of maximal O2 consumption (VO2max)] on 3-h recovery of oxygen uptake (VO2). VO2 and respiratory exchange ratios were measured by open-circuit spirometry in five trained female cyclists (age 25 +/- 1.7 yr) and five untrained females (age 27 +/- 0.8 yr). Postexercise VO2 measured at intervals for 3 h after exercise was greater (P less than 0.01) after exercise at 50% VO2max in trained (0.40 +/- 0.01 l/min) and untrained subjects (0.39 +/- 0.01 l/min) than after 70% VO2max in (0.31 +/- 0.02 l/min) and untrained subjects (0.29 +/- 0.02 l/min). The lower respiratory exchange ratio values (P less than 0.01) after 50% VO2max in trained (0.78 +/- 0.01) and untrained subjects (0.80 +/- 0.01) compared with 70% VO2max in trained (0.81 +/- 0.01) and untrained subjects (0.83 +/- 0.01) suggest that an increase in fat metabolism may be implicated in the long-term elevation of metabolism after exercise. This was supported by the greater estimated fatty acid oxidation (P less than 0.05) after 50% VO2max in trained (147 +/- 4 mg/min) and untrained subjects (133 +/- 9 mg/min) compared with 70% VO2max in trained (101 +/- 6 mg/min) and untrained subjects (85 +/- 7 mg/min).  相似文献   

17.
Ventilatory responsiveness to hypoxia (HVR) has been reported to be different between highly trained endurance athletes and healthy sedentary controls. However, a linkage between aerobic capacity and HVR has not been a universal finding. The purpose of this study was to examine the relationship between HVR and maximal oxygen consumption (VO2 max) in healthy men with a wide range of aerobic capacities. Subjects performed a HVR test followed by an incremental cycle test to exhaustion. Participants were classified according to their maximal aerobic capacity. Those with a VO2 max of >or=60 ml x kg(-1) x min(-1) were considered highly trained (n = 13); those with a VO2 max of 50-60 ml x kg(-1) x min(-1) were considered moderately-trained (n = 18); and those with a VO2 max of <50 ml x kg(-1) x min(-1) were considered untrained (n = 24). No statistical differences were detected between the three groups for HVR (P > 0.05), and the HVR values were variable within each group (range: untrained = 0.28-1.61, moderately trained = 0.23-2.39, and highly trained = 0.08-1.73 l x min.%arterial O2 saturation(-1)). The relationship between HVR and VO2 max was not statistically significant (r = -0.1723; P > 0.05). HVR was also unrelated to maximal minute ventilation and ventilatory equivalents for O2 and CO2. We found that a spectrum of hypoxic ventilatory control is present in well-trained endurance athletes and moderately and untrained men. We interpret these observations to mean that other factors are more important in determining hypoxic ventilatory control than physical conditioning per se.  相似文献   

18.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

19.
The aim of the present study was to ascertain the effects of training and exhaustive exercise on mitochondrial capacities to oxidize pyruvate, 2-oxoglutarate, palmitoylcarnitine, succinate and ferrocytochrome c in various tissues of the rat. Endurance capacity was significantly increased (P<0.01) by an endurance training program over a period of 5-6 weeks. The average run time to exhaustion was 214.2+/-23.8 min for trained rats in comparison with 54.5+/-11.7 min for their untrained counterparts. Oxidative capacities were reduced in liver (P<0.05) and brown adipose tissue (P<0.05) as a result of endurance training. On the contrary, the oxidative capacity of skeletal muscle was slightly increased and that of heart almost unaffected except for the oxidation of palmitoylcarnitine, which was significantly reduced (P<0.05) as a result of training.  相似文献   

20.
Forty-eight sedentary and 39 quite active or well-trained men participated in this study. Muscle biopsy samples were taken from the vastus lateralis for the determination of fiber type composition (I, IIa, IIb), fiber type area, and assay of the following enzymes: malate dehydrogenase (MDH), 3-hydroxyacyl CoA dehydrogenase (HADH) and oxoglutarate dehydrogenase (OGDH). Maximal oxygen uptake (VO2max) was determined with a progressive cycle ergometer test, while endurance performance or maximal aerobic capacity (MAC) was defined as the total work output during a 90-min cycle ergometer test. Correlation analysis revealed no evidence of association between fiber type composition and VO2max kg-1 or MAC kg-1 in sedentary subjects, while active men exhibited significant correlation between % type I (r = 0.52), % type IIb (r = 0.31) and VO2max kg-1. Enzyme activities were not significantly correlated with MAC kg-1 and VO2max kg-1 in sedentary men while active men exhibited significant correlation for the three enzymes (0.37 less than or equal to r less than or equal to 0.51) with VO2max kg-1. These results show that the contribution of muscle fiber type and enzyme activities to aerobic performance may be inflated from a statistical point of view by the training status heterogeneity of subjects. They also suggest that variation in these muscle characteristics does not account for the individual differences in aerobic performance of subjects who have never trained before. Therefore, the assessment of muscle characteristics is not as useful as originally thought for the detection of individuals with a high potential for endurance performance among untrained subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号