首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
上转换发光纳米材料(UCNPs)具有荧光寿命长、潜在生物毒性低、穿透深度大、对生物组织损伤小且几乎没有背景光等显著优点,近年来,在光动力治疗(PDT)、生物成像及生物检测等领域已经得到广泛应用.但在应用的过程中存在一些缺陷,如在PDT中UCNPs与光敏剂之间能量转移效率较低、正常组织过热;在生物成像中,荧光强度较弱、光敏剂和激活剂有能量回流、成像模式单一等问题.科研人员针对上述问题研究出了很多解决的方法,如缩短UCNPs与目标物之间的距离、改变照射激光的强度、改变UCNPs的结构、将UCNPs作为新型多功能平台整合成像与治疗于一体等,使部分问题得到了很好的解决.本文重点综述了UCNPs应用在PDT和生物成像中所出现的问题及解决方法,并对UCNPs在生物医学领域的应用发展趋势进行展望.  相似文献   

2.
生物医学光子学的发展,总是伴随并促进着光子学新技术的发展。光学生物成像技术在癌症肿瘤诊断上有着巨大应用,尤其是具有优良发光特性的稀土离子掺杂的上转换发光纳米颗粒与光学生物成像技术的结合进一步发展了生物光子学在这一领域的应用。鉴于近几年很多人对上转换发光纳米粒子的大量研究,本文对其进行了系统的阐述,综述了稀土上转换发光纳米粒子的光学特异性、发光原理及其在光学成像中不可替代的优势;描述了上转换纳米粒子的化学组成,介绍了几种基本的合成方法,重点说明了水热合成法和热分解法,并从材料和光学两方面分析了生物应用的效率优化;总结了目前上转换材料在生物光子学中的几大应用,着重介绍了生物传感、细胞成像、动物成像、漫射光层析成像、光动力治疗、多模式成像六个方面的应用。本文在最后也对今后的研究进行了展望。  相似文献   

3.
近红外(NIR)光诱导的光热治疗(PTT)因其无创、非侵入、毒副作用低、可精准靶向治疗等特性,已成为肿瘤精准治疗的新型手段。凭借其独特的表面等离激元共振(SPR)特性及其高效的光热转换效率、生物毒性与良好的光稳定性,金纳米颗粒(Au NPs)已成为理想的光热治疗剂。而高质量成像技术是实现有效光热治疗的可靠有力的工具,尤其是多模态成像技术,比起单一成像方式具有更卓越的性能,为更全面、更精准的肿瘤成像提供了可能,显著提高了非侵入性医学治疗的潜力。NIR光激发的稀土上转换纳米颗粒(UCNPs),因其丰富的4f电子结构展现出磁性、荧光、X射线衰减和放射等多功能特性,使其作为造影剂在多模态成像领域展现了重要的应用前景。因此,构建NIR光诱导的Au NPs/UCNPs复合纳米体系,可用于多模态成像引导下的光热治疗,有望成为癌症诊疗的一种新策略。本文简单介绍了Au NPs、UCNPs的光学特性,重点综述了NIR光诱导的UCNPs-Au NPs(纳米壳、纳米棒、纳米团簇)复合纳米体系在癌症光热治疗领域的最新研究进展,并对其实现诊疗一体化的未来进行了展望。  相似文献   

4.
目的:为了对吖啶酯发光免疫分析技术的研究与发展有更深入地了解,更加知晓吖啶酯发光免疫分析技术的发展前景。方法:通过对采用吖啶酯发光免疫分析技术治疗的疾病进行分析研究,以及参考最近几年几十篇有关吖啶酯发光免疫分析技术的文献,深入研究近期的20多篇文献。分析吖啶酯发光免疫分析技术在免疫学上的研究及重大突破,整理数据分析吖啶酯发光免疫分析技术在很多领域重大应用。结果:吖啶酯发光免疫分析技术在现今医学有着巨大的贡献,尤其在对测定血清中癌胚抗原(CEA)含量的检测方法和检测人体血清中促甲状腺激素含量的酶促化学发光免疫分析方法中效果显著,值得大力推广。结论:现今社会高速发展,一般的医学检测技术已无法满足日益精进的免疫学技术,于是吖啶酯发光免疫分析技术应运而生,为现今免疫学贡献自己的一份力量,提高人类各个领域技术。  相似文献   

5.
摘要:荧光免疫吸附检测技术利用荧光物质标记识别分子,基于待测物与识别分子的特异性结合对待测物进行定性定量分析,具有操作简单、耗时少、成本低、稳定性好等优点。随着纳米材料的飞速发展及其在荧光免疫吸附检测技术中的广泛应用,该技术在生物检测的领域具有更加广阔的应用前景。本文介绍了量子点、碳点、稀土上转换纳米粒子、聚集诱导发光材料等新型发光材料的光学性能特点以及将其构建新型荧光免疫吸附检测平台,综述了近年来基于这些新型发光材料构建荧光免疫吸附检测平台对蛋白、核酸、病毒、细菌和小分子霉菌毒素等物质检测的研究进展,并讨论了该技术在未来的发展过程中需要解决的问题,包括进一步提高自动化水平争取实现实时检测,以及加快检测技术在诊断领域的临床转化等,希望本文的系统介绍可以助力高性能荧光免疫吸附检测技术的发展。  相似文献   

6.
近年来,纳米技术为酶固定化提供了多种纳米级材料,纳米材料固定化酶不仅具有高的酶负载量,而且具有良好的酶稳定性。本文基于纳米材料固定化酶,对纳米材料的种类进行了总结,分析了纳米材料对固定化酶性能的影响,并介绍了纳米级固定化方法及纳米材料固定化酶在生物转化、生物传感器、生物燃料电池等领域的应用。  相似文献   

7.
稀土发光材料在荧光成像中的应用   总被引:1,自引:0,他引:1  
稀土发光材料由于具有荧光寿命长、发射峰半峰宽窄和Stokes位移大等发光性质,在生命科学研究的各个领域,包括荧光免疫分析、离子识别、蛋白质活性测定、核酸检测等,有着广泛而重要的应用前景.本文以稀土配合物、稀土掺杂上转换材料和长余辉材料为代表,就当前稀土发光材料的发光性质及其在生物成像标记方面的研究做一综述,并对稀土发光...  相似文献   

8.
上转换发光是指稀土离子吸收两个或两个以上低能光子(近红外光)而辐射一个高能光子(可见光)的发光现象。与传统紫外激发相比,上转换发光由于采用近红外光激发而具有高的组织穿透深度、弱的生物样品损伤且无生物样品自发荧光,这些优点表明上转换发光在生物成像方面具有广阔的应用前景。文章介绍了基于稀土上转换发光过程的显微成像技术和活体成像技术,及其在肿瘤靶向成像领域的应用。  相似文献   

9.
神经胶质瘤是中枢神经系统中恶性程度与侵袭性最高的肿瘤之一,其难治性和高致死性亟需尽快开发新的诊疗方法。近年来,各种无机纳米材料独特的内在物化特性的探索应用,为神经胶质瘤的早期诊断和靶向治疗带来了新希望。该文系统地介绍了当前已应用于神经胶质瘤诊疗研究的一些重要无机纳米材料,包括纳米金、纳米银、超顺磁性氧化铁、石墨烯、碳纳米管、介孔硅、半导体量子点、上转换纳米材料、层状双氢氧化物以及二硫化钼。在神经胶质瘤诊断方面,超顺磁性氧化铁、量子点和上转换纳米材料等无机纳米材料,具有优异的肿瘤组织成像性能,能提高诊断的灵敏性,可实现对神经胶质瘤的早期诊断和实时监测;在治疗方面,大多数无机纳米材料进行功能性修饰后用作靶向药物载体,可加载多种抗癌的药物、基因和抗体等,提高靶向输送能力,以实现对胶质瘤的靶向治疗,延长药物在体内的半衰期,同时减少全身副作用;其中,纳米金和纳米银还可用于神经胶质瘤放射增敏治疗,碳纳米管和超顺磁性氧化铁可分别用于神经胶质瘤光热治疗和磁热治疗,达到安全特异的治疗效果。这些无机纳米材料尽管在体内降解、靶向可控性、个体化等技术性问题上还需要进一步解决,但其探索应用已为神经胶质瘤治疗研究提供了新的方向。  相似文献   

10.
分子识别和药物递送对疾病的早期诊断和靶向治疗至关重要。DNA作为一种天然纳米分子,具有良好的生物相容性、分子识别性及序列可编程性等特点,因此在生物医学研究中受到广泛关注。然而,DNA纳米材料存在依赖于光响应系统且不能穿透细胞膜等缺点,导致单独使用无法满足实际应用的需求。近年来,涌现出大量DNA-金属纳米材料,这些复合材料具有光化学特性、组织穿透能力和药物装载能力等功能,克服了单一材料的缺陷,在生物传感、生物成像和药物靶向递送中表现出巨大的应用潜力。本文集中于3种近年热门的DNA-金属纳米材料(DNA-铜纳米材料、DNA-上转换纳米材料、DNA-金属有机框架纳米材料),依据DNA与各金属纳米材料的结合方式进行合理分类,介绍其在生物传感、生物成像和药物递送中的最新应用进展,并对未来发展方向进行了展望。  相似文献   

11.
Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.  相似文献   

12.
A novel and sensitive immunoassay for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples was developed by using artificial antigen-modified magnetic nanoparticles (MNPs) as immunosensing probes and antibody functionalized upconversion nanoparticles (UCNPs) as signal probes. NaY0.78F4:Yb0.2, Tm0.02 and NaY0.28F4:Yb0.7,Er0.02 UCNPs were prepared and functionalized, respectively, with immobilized monoclonal anti-AFB1 antibodies and anti-OTA antibodies as signal probes. Based on a competitive immunoassay format, the detection limit for both AFB1 and OTA under optimal conditions was as low as 0.01 ng mL−1, and the effective detection range was from 0.01 to 10 ng mL−1. The proposed method was successfully applied to measure AFB1 and OTA in naturally contaminated maize samples and compared to a commercially available ELISA method. The high sensitivity and selectivity of this method is due to the magnetic separation and concentration effect of the MNPs, the high sensitivity of the UCNPs, and the different emission lines of Yb/Tm and Yb/Er doped NaYF4 UCNPs excited by 980 nm laser. Multicolor UCNPs have the potential to be used in other applications for detecting toxins in the field of food safety and other fields.  相似文献   

13.
In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml.  相似文献   

14.
Many sulfides are toxic substances that easily harm the respiratory tract, therefore affecting respiratory function or damaging other organs of the body, leading to its failure. Therefore, there is a pressing need to develop methods for sensitive detection of sulfur ions (S2?). Based on luminescence resonance energy transfer (LRET) theory, we report the construction of a near‐infrared (NIR) excitation luminescence probe using NaGdF4:Yb3+,Er3+@NaYF4 upconversion nanoparticles (UCNPs) as the donor and dye‐670 as the receptor for detection of S2?. When UCNPs and dye‐670 molecules were combined using ligand exchange and electrostatic attraction, LRET occurred and UCNP luminescence was quenched. When S2? was added to the system, sulfide ions were able to destroy the double bond of the dye, inhibiting LRET and restoring UCNP luminescence. Under optimum condition, the linear range of S2? detection was 0.65–18.2 μM, and the detection limit was 34.2 nM. This method was applied for determination of S2? in water with satisfactory results.  相似文献   

15.
A novel label-free fluorescence nanosensor was developed for ultrasensitive detection of protamine and heparin based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The FRET system was formed by the electrostatic adsorption of AuNPs on UCNPs, and the fluorescence of UCNPs was significantly quenched. When protamine was added to the mixture of UCNPs–AuNPs, the AuNPs interacted with protamine and then desorbed from the surface of UCNPs and aggregated, resulting in the recovery of the fluorescence of UCNPs. On the addition of both protamine and heparin, the FRET system formed owing to the stronger interaction between heparin and protamine than that with AuNPs, leading to a marked fluorescence quenching of UCNPs. The concentrations of protamine and heparin were proportional to the changes of the fluorescence of UCNPs. The linear response range was obtained over the concentration ranges of 0.02 to 1.2 μg/ml and 0.002 to 2.0 μg/ml with low detection limits of 6.7 and 0.7 ng/ml for protamine and heparin, respectively. Simultaneous measurement of protamine and heparin in human serum can be achieved, suggesting that the nanosensor can be used in a complex biological sample matrix.  相似文献   

16.
Zhang J  Mi C  Wu H  Huang H  Mao C  Xu S 《Analytical biochemistry》2012,421(2):673-679
High-quality NaYF4:Yb/Er/Gd up-conversion nanoparticles (UCNPs) were first synthesized by a solvothermal method using rare earth stearate, sodium fluoride, ethanol, water, and oleic acid as precursors. Doped Gd3+ ions can promote the transition of NaYF4 from cubic to hexagonal phase, shorten the reaction time, and reduce the reaction temperature without reducing the luminescence intensity of NaYF4:Yb/Er UCNPs. X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and luminescence spectroscopy were applied to characterize the UCNPs. The nanoparticles exhibited small size and excellent green up-conversion photoluminescence, making them suitable for biological applications. After the surfaces of NaYF4:Yb/Er/Gd UCNPs were modified with amino groups through the Stöber method, they could be brought close enough to the analytically important protein called R-phycoerythrin (R-PE) bearing multiple carboxyl groups so that energy transfer could occur. A luminescence resonance energy transfer (LRET) system was developed using NaYF4:Yb/Er/Gd UCNPs as an energy donor and R-PE as an energy acceptor. As a result, a detection limit of R-PE of 0.5 μg/ml was achieved by the LRET system with a relative standard deviation of 2.0%. Although this approach was first used successfully to detect R-PE, it can also be extended to the detection of other biological molecules.  相似文献   

17.
近几年,稀土上转换荧光纳米材料作为新型的荧光探针受到研究者的广泛关注,其优势在于光化学稳定性好、发射谱带窄、荧光寿命长、Stokes位移大等.同时,它利用近红外激光器作为激发光源,组织穿透能力好、对生物组织的损伤小、几乎没有背景荧光,使其应用于生物活体荧光成像成为可能.本文主要综述了最近稀土上转换荧光纳米材料在制备与生物应用方面的研究进展.  相似文献   

18.
A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively explored for targeted delivery of anti-cancer agents, because they can accumulate in the solid tumor site via leaky tumor vascular structures, thereby selectively delivering therapeutic payloads into the desired tumor tissue. In recent years, nanoscale delivery vehicles for small interfering RNA (siRNA) have been also developed as effective therapeutic approaches to treat cancer. Furthermore, rationally designed multi-functional surface modification of these nanomaterials with cancer targeting moieties, protective polymers, and imaging agents can lead to fabrication versatile theragnostic nanosystems that allow simultaneous cancer therapy and diagnosis. This review highlights the current state and future prospects of diverse biomedical nanomaterials for cancer therapy and imaging.  相似文献   

19.
Due to their capacity to immobilize more bioreceptor parts at reduced volumes, nanomaterials have emerged as potential tools for increasing the sensitivity to specific molecules. Furthermore, carbon nanotubes, gold nanoparticles, polymer nanoparticles, semiconductor quantum dots, nanodiamonds, and graphene are among the nanomaterials that are under investigation. Due to the fast development of this field of research, this review summarizes the classification of biosensors using the main receptors and design of biosensors. Numerous studies have concentrated on the manipulation of persistent luminescence nanoparticles (PLNPs) in biosensing, cell tracking, bioimaging, and cancer therapy due to the effective removal of autofluorescence interference from tissues and the ultra-long near-infrared afterglow emission. As luminescence has a unique optical property, it can be detected without constant external illumination, preventing autofluorescence and light dispersion through tissues. These successes have sparked an increasing interest in creating novel PLNP types with the desired superior properties and multiple applications. In this review, we emphasize the most recent developments in biosensing, imaging, and image-guided therapy whilst summarizing the research on synthesis methods, bioapplications, biomembrane modification, and the biosafety of PLNPs. Finally, the remaining issues and difficulties are examined together with prospective future developments in the biomedical application field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号