首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
噬菌体抗体库技术与高通量筛选抗体   总被引:1,自引:0,他引:1  
噬菌体抗体库技术是组合技术与基因工程抗体技术相结合的产物 ,为快速筛选特异性抗体提供了简便而高效的操作系统 ,随着蛋白质组学的飞速发展 ,对抗体的大规模制备的需求日益增加 ,迫切需要发展高质量的抗体库和与之相整合的高通量筛选技术。近年来 ,以上技术的发展和自动化设备的引入为大规模抗体制备的实现提供了条件 ,对这一领域的研究进展做一概述。  相似文献   

2.
目前生物药物正处在高速发展阶段,但生物大分子的一些固有特性限制了其成药性,使得很多具有良好治疗潜能的生物大分子 最终不能开发成药物,因而严重制约了生物药物的发展。生物药物开发的瓶颈已从“新分子的产生”转向“如何获得具有优良生理特性 和预期治疗效果的有效药物”。近年来,通过合理设计改造生物大分子高级结构以优化其成药性的研究获得了快速发展。综述基于设计 的生物大分子成药性优化策略研究进展。  相似文献   

3.
噬菌体展示抗体库筛选技术研究进展   总被引:2,自引:0,他引:2  
噬菌体展示技术已成为制备高亲和力抗体的强有力的工具。而噬菌体抗体库的筛选是在获得高亲和力抗体过程中很关键的一个环节。总结了针对不同复杂程度的抗原所须采用的不同筛选方法,并简单介绍了高通量筛选的优势。  相似文献   

4.
抗体库为基因工程抗体领域带来了革命性的突破,其技术核心是将抗体的表型与基因型偶联,从抗体库中找到针对特异抗原的抗体基因。抗体库的基因可来自免疫或非免疫的策略;抗体分子形式包括Fab、单链抗体、单域抗体、微型抗体、最小识别单位等;展示平台包括噬菌体、核糖体、酵母、细菌、杆状病毒、哺乳细胞等;筛选策略包括抗原、细胞、组织切片、体内筛选等。抗体库在操作上具有高通量、工程化的特点,便于实现产业化,显示出巨大的商业开发价值。  相似文献   

5.
噬菌体抗体库筛选技术   总被引:8,自引:0,他引:8  
魏东芝  赖敏 《生命科学》2000,12(3):134-136,129
噬菌体展示技术(Phage Display Technology)为制备高亲和性抗体提供了有力的工具。噬菌体抗体库的筛选是其中关键的环节,为了提高筛选效率,用包被在固体表面的抗原进行筛选的传统方法不断地被改进,如宿主菌直接洗脱和双层膜筛选系统和抗抗体替代抗原筛选系统。将噬菌体感染宿主菌的过程与筛选过程相关联,产生了选择性感染筛选系统。  相似文献   

6.
在过去的20年中,噬菌体抗体库筛选技术被广泛的应用于抗体筛选、疾病治疗,临床诊断以及基础研究之中。在该技术的应用过程中,快速有效的筛选出最适合的单克隆抗体并进行可靠和高效的数据管理和分析是十分重要的。文中总结了近年来噬菌体抗体库的高通量筛选方法并且对数据管理做了简要介绍。  相似文献   

7.
抗大肠癌噬菌体单链抗体的筛选及初步鉴定   总被引:6,自引:0,他引:6  
 应用 3种方法 (肿瘤细胞膜表面和胞内、裸鼠体内和组织切片 ) ,从全人源化的抗大肠癌噬菌体初级抗体库中筛选肿瘤特异性的噬菌体单链抗体 (Sc Fv) .在肿瘤细胞经过 3轮亲和选择 ,回收结合胞膜和内化进入胞内的噬菌体 ,得到抗肿瘤噬菌体单链抗体的富集倍数为 430倍 ;荷瘤裸鼠体内注入初级抗体库后 ,在不同时刻点处死裸鼠 ,回收肿瘤组织内的噬菌体 ,其回收率在 2 4 h时最高 ;初级抗体库与大肠癌组织切片亲和选择后 ,从冰冻组织切片上比从石蜡组织切片上回收得到的噬菌体高出约 1 .6倍 .从上述方法挑选单克隆 ,经 ELISA筛选抗大肠癌阳性噬菌体克隆株 ,分离得到 5个对大肠癌细胞反应较好的单克隆噬菌体单链抗体 .进一步用细胞 ELISA检测对各种肿瘤细胞的特异性反应 ,其中 4个对大肠癌细胞有很好的特异性 ,1个克隆对所有肿瘤细胞均有反应 .因此 ,3种方法用于筛选抗大肠癌噬菌体初级抗体库是有效的 ,具有推广和应用价值 .  相似文献   

8.
噬菌体抗体库技术是一项新兴的基因工程抗体技术,应用这项技术获得高特异性抗体的关键之一就是筛选环节。根据抗原性质以及筛选目的的不同,筛选方法的选择也不相同,各种筛选策略的优化对中和抗体的获得有至关重要的作用。  相似文献   

9.
纳米抗体(nanobody, Nb)是在骆驼科血清中发现的一种新型抗体,具有体积小、特异性强、稳定性高、易于表达和能识别隐藏的抗原表位等优势,在各个领域具有广泛的应用价值。本文介绍了纳米抗体筛选与优化过程,包括纳米抗体文库构建、体外展示和亲和力成熟3个重要技术阶段的分类与特点。其中,简要描述了天然、免疫及半合成/合成文库的制备方法与重要参数,并系统介绍了应用噬菌体、酵母、细菌、核糖体/mRNA和真核细胞等表面展示系统,以及酵母双杂交、高通量测序和质谱鉴定方法,共8种不同体外展示技术进行快速筛选的方法及其优缺点,汇总用于提升纳米抗体功能可靠性的体外及计算机辅助亲和力成熟技术平台,为综合运用各种技术手段快速获得稳定、可靠、特异的纳米抗体类药物或诊断制剂提供了参考。  相似文献   

10.
新药研发过程中.通过筛选而获得具有生物活性的先导化合物.是创新药物研究的关键.目前药物筛选模型已经从传统的整体动物、器官和组织水平发展到细胞和分子水平。创新药物的发现都离不开采用适当的药物作用靶点对大量化合物样品进行筛选.而且筛选规模越大,发现新药的机会就越多。随着计算机技术、生物芯片、蛋白质组学、组合化学等的发展.高通量药物筛选技术应运而生。高通量筛选体系在创新药物筛选中的应用是新药开发研究的一个重要领域。  相似文献   

11.
Recent years have seen progress in druggability simulations, that is, molecular dynamics simulations of target proteins in solutions containing drug‐like probe molecules to characterize their drug‐binding abilities, if any. An important consecutive step is to analyze the trajectories to construct pharmacophore models (PMs) to use for virtual screening of libraries of small molecules. While considerable success has been observed in this type of computer‐aided drug discovery, a systematic tool encompassing multiple steps from druggability simulations to pharmacophore modeling, to identifying hits by virtual screening of libraries of compounds, has been lacking. We address this need here by developing a new tool, Pharmmaker, building on the DruGUI module of our ProDy application programming interface. Pharmmaker is composed of a suite of steps: (Step 1) identification of high affinity residues for each probe molecule type; (Step 2) selecting high affinity residues and hot spots in the vicinity of sites identified by DruGUI; (Step 3) ranking of the interactions between high affinity residues and specific probes; (Step 4) obtaining probe binding poses and corresponding protein conformations by collecting top‐ranked snapshots; and (Step 5) using those snapshots for constructing PMs. The PMs are then used as filters for identifying hits in structure‐based virtual screening. Pharmmaker, accessible online at http://prody.csb.pitt.edu/pharmmaker , can be used in conjunction with other tools available in ProDy.  相似文献   

12.
Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37°C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well -counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewisx in -glycans. A glycopolymer acceptor for 1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5–6 fold increase in throughput compared to the corresponding solution-phase assay.  相似文献   

13.
To engineer proteins with desirable characteristics from a naturally occurring protein, high-throughput screening (HTS) combined with directed evolutional approach is the essential technology. However, most HTS techniques are simple positive screenings. The information obtained from the positive candidates is used only as results but rarely as clues for understanding the structural rules, which may explain the protein activity. In here, we have attempted to establish a novel strategy for exploring functional proteins associated with computational analysis. As a model case, we explored lipases with inverted enantioselectivity for a substrate p-nitrophenyl 3-phenylbutyrate from the wild-type lipase of Burkhorderia cepacia KWI-56, which is originally selective for (S)-configuration of the substrate. Data from our previous work on (R)-enantioselective lipase screening were applied to fuzzy neural network (FNN), bioinformatic algorithm, to extract guidelines for screening and engineering processes to be followed. FNN has an advantageous feature of extracting hidden rules that lie between sequences of variants and their enzyme activity to gain high prediction accuracy. Without any prior knowledge, FNN predicted a rule indicating that "size at position L167," among four positions (L17, F119, L167, and L266) in the substrate binding core region, is the most influential factor for obtaining lipase with inverted (R)-enantioselectivity. Based on the guidelines obtained, newly engineered novel variants, which were not found in the actual screening, were experimentally proven to gain high (R)-enantioselectivity by engineering the size at position L167. We also designed and assayed two novel variants, namely FIGV (L17F, F119I, L167G, and L266V) and FFGI (L17F, L167G, and L266I), which were compatible with the guideline obtained from FNN analysis, and confirmed that these designed lipases could acquire high inverted enantioselectivity. The results have shown that with the aid of bioinformatic analysis, high-throughput screening can expand its potential for exploring vast combinatorial sequence spaces of proteins.  相似文献   

14.
噬菌体抗体库技术:靠近理想的现实   总被引:8,自引:0,他引:8  
刘晶  黄华梁  姜述德 《遗传》2002,24(1):94-99
噬菌体抗体库技术是近年来在基因工程抗体研究领域中发展起来的一项新技术,该技术把特异性结合和高效筛选有机结合,大大缩减了获得目的性抗体的工作量。本文综述了噬菌体抗体库的构建,种类,筛选方法及最新进展。 Abstract:Antibody phage display technology is a new library technology in the area of gene engineering antibodies in recent years.This technology makes the work to get specific antibody more efficiently by combing specific binding between antibody and antigen with rapid screening.The construction of the phage antibody librariesclassificationscreening approaches is discussed in the paper.The further research of this technology is also suggested.  相似文献   

15.
16.
The discovery of monoclonal antibodies (mAbs) that bind to a particular molecular target is now regarded a routine exercise. However, the successful development of mAbs that (1) express well, (2) elicit a desirable biological effect upon binding, and (3) remain soluble and display low viscosity at high concentrations is often far more challenging. Therefore, high throughput screening assays that assess self-association and aggregation early in the selection process are likely to yield mAbs with superior biophysical properties. Here, we report an improved version of affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) that is capable of screening large panels of antibodies for their propensity to self-associate. AC-SINS is based on concentrating mAbs from dilute solutions around gold nanoparticles pre-coated with polyclonal capture (e.g., anti-Fc) antibodies. Interactions between immobilized mAbs lead to reduced inter-particle distances and increased plasmon wavelengths (wavelengths of maximum absorbance), which can be readily measured by optical means. This method is attractive because it is compatible with dilute and unpurified mAb solutions that are typical during early antibody discovery. In addition, we have improved multiple aspects of this assay for increased throughput and reproducibility. A data set comprising over 400 mAbs suggests that our modified assay yields self-interaction measurements that are well-correlated with other lower throughput assays such as cross-interaction chromatography. We expect that the simplicity and throughput of our improved AC-SINS method will lead to improved selection of mAbs with excellent biophysical properties during early antibody discovery.  相似文献   

17.
蛋白质与抗体微阵列及其在生物医学研究中的应用   总被引:8,自引:0,他引:8  
随着人类基因组测序的顺利完成及其他相关领域如机械制造、微电子加工技术及生物信息学方面所取得的进展,以蛋白质为研究对象的蛋白质组学愈显重要,高通量的蛋白质与抗体阵列芯片分析技术正日益为人们关注.对蛋白质分析策略及以阵列为基础的蛋白质芯片分析原理、相关的制备方法与检测技术及其在生物学研究、医学与实验诊断应用方面进行了阐述,并对现阶段该技术存在的不足与发展前景进行了讨论.  相似文献   

18.
《MABS-AUSTIN》2013,5(2):483-492
The discovery of monoclonal antibodies (mAbs) that bind to a particular molecular target is now regarded a routine exercise. However, the successful development of mAbs that (1) express well, (2) elicit a desirable biological effect upon binding, and (3) remain soluble and display low viscosity at high concentrations is often far more challenging. Therefore, high throughput screening assays that assess self-association and aggregation early in the selection process are likely to yield mAbs with superior biophysical properties. Here, we report an improved version of affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) that is capable of screening large panels of antibodies for their propensity to self-associate. AC-SINS is based on concentrating mAbs from dilute solutions around gold nanoparticles pre-coated with polyclonal capture (e.g., anti-Fc) antibodies. Interactions between immobilized mAbs lead to reduced inter-particle distances and increased plasmon wavelengths (wavelengths of maximum absorbance), which can be readily measured by optical means. This method is attractive because it is compatible with dilute and unpurified mAb solutions that are typical during early antibody discovery. In addition, we have improved multiple aspects of this assay for increased throughput and reproducibility. A data set comprising over 400 mAbs suggests that our modified assay yields self-interaction measurements that are well-correlated with other lower throughput assays such as cross-interaction chromatography. We expect that the simplicity and throughput of our improved AC-SINS method will lead to improved selection of mAbs with excellent biophysical properties during early antibody discovery.  相似文献   

19.
王干诚  马明  叶延帧  席建忠 《遗传》2016,38(5):391-401
利用功能缺失型(Loss-of-function)或者功能获得型(Gain-of-function) 策略高通量筛选功能基因,是研究人员快速寻找调控特定表型的重要或关键基因的主要方法。RNA干扰(RNA interference,RNAi)的遗传筛选方法因操作简单、成本相对较低等优势,尽管已经得到了广泛的应用,然而其抑制效果不完全、脱靶效应明显等劣势依然存在。近年来兴起的CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat sequences/ CRISPR-associated protein 9)技术能快速、简便、准确地实现基因组敲除等编辑功能,因而成为一种强大的遗传筛选工具;在各种细胞系、人和小鼠及斑马鱼等多种模式动物中,大规模运用该方法筛选功能基因已经取得了巨大成功。本文总结了CRISPR/Cas9技术的特点,将其与传统基因工程方法进行了分析比较,回顾了近期相关的高通量功能基因筛选工作,最后探讨了该技术未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号