首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine modulates cell growth in human epidermoid carcinoma (A431) cells.   总被引:2,自引:0,他引:2  
Adenosine mediates many physiological functions via activation of extracellular receptors. The modulation of cell growth by adenosine was found to be receptor-mediated. In A431 cells adenosine evoked a biphasic response in which a low concentration (approximately 10 microM) produced inhibition of colony formation but at higher concentrations (up to 100 microM) this inhibition was progressively reversed. Evidence for the involvement of A1 (inhibitory) and A2 (stimulatory) adenosine receptors in regulating cell growth of these tumor cells was obtained through plating efficiency studies based on the relative potency of adenosine agonists and antagonists. When both A1 and A2 receptors were blocked, colony formation or growth was not inhibited at low concentrations of adenosine but was inhibited at high adenosine concentrations.  相似文献   

2.
The exact role of adenosine in the adenosine deaminase (EC 3.5.4.4) deficiency-related severe combined immunodeficiency disease has not been ascertained. We analysed the effects of adenosine, in the presence of the adenosine deaminase inhibitor, deoxycoformycin, on cell growth, cell phase distributions and intracellular nucleotide concentrations of cultured human lymphoblasts. Adenosine had a biphasic effect on cell growth and cell cycle distribution of a partial hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) deficient MOLT-HPRT cell line. After 24 h of incubation, 60 microM adenosine inhibited cell growth more extensively than did 100 and 200 microM adenosine. The distribution of the MOLT-HPRT cells in the various phases of the cell cycle showed a similar biphasic pattern. Adenosine concentrations in the medium below 10 microM caused accumulation of adenine ribonucleotides and depletion of phosphoribosylpyrophosphate, UTP and CTP in the cells. This was associated with inhibition of cell growth. Medium adenosine concentrations above 10 microM neither resulted in accumulation of adenine ribonucleotides nor in inhibition of cell growth.  相似文献   

3.
Adenosine inhibits cell division and promotes neurite extension in PC12 cells   总被引:12,自引:0,他引:12  
Low concentrations (10-50 microM) of adenosine (EC50 = 17 microM) or chloroadenosine (EC50 = 23 microM) prevent the division of PC12 cells. This inhibition is not mimicked by guanosine, inosine, 3',5' dideoxyadenosine, phenylisopropyladenosine, or adenylylimidodiphosphate. The growth inhibition is not relieved by addition of uridine or deoxycytidine, nor is it potentiated by homocysteine thiolactone. Inhibition of adenosine uptake does not inhibit adenosine-dependent growth arrest. PC12 variants that are deficient in adenosine kinase are as sensitive as wild-type cells to the growth-inhibitory effects of adenosine. These experiments suggest that adenosine prevents cell division at an adenosine receptor rather than acting after being metabolically altered. The adenosine receptor that inhibits cell division does not appear to be the adenosine receptor that stimulates adenylate cyclase for these reasons: (1) phenylisopropyladenosine, which is a potent agonist of this receptor, does not inhibit cell division; (2) 3',5' dideoxyadenosine does not antagonize the effect of adenosine on cell division; and (3) theophylline does not affect growth inhibition by adenosine. Thus, these experiments suggest the existence of a second adenosine receptor that can inhibit cell division. Adenosine also promotes the morphological differentiation of PC12 cells. In the presence of the adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenosine (EHNA), adenosine causes the formation of short neurites (one-half to one and one-half cell diameters in length). Adenosine also increases the rate of neurite formation of both long and short neurites in response to NGF.  相似文献   

4.
Rapid kinetic techniques were applied to determine the effect of transport inhibitors on the transport and metabolism of adenosine in human red cells. Dipyridamole inhibited the equilibrium exchange of 500 microM adenosine by deoxycoformycin-treated cells in a similar concentration dependent manner as the equilibrium exchange and zero-trans influx of uridine with 50% inhibition being observed at about 20 nM. Intracellular phosphorylation of adenosine at an extracellular concentration of 5 microM was inhibited only by dipyridamole concentrations greater than or equal to 100 nM, which inhibited transport about 95%. Lower concentrations of dipyridamole actually stimulated adenosine phosphorylation, because the reduced influx of adenosine lessened substrate inhibition of adenosine kinase. When the cells were not treated with deoxycoformycin, greater than 95% of the adenosine entering the cells at a concentration of 100 microM became deaminated. A 95-98% inhibition of adenosine transport by treatment with dipyridamole, dilazep, or nitrobenzylthioinosine inhibited its deamination practically completely, whereas adenosine phosphorylation was inhibited only 50-85%. Whether adenosine entering the cells is phosphorylated or deaminated is strictly based on the kinetic properties of the responsible enzymes, substrate inhibition of adenosine kinase, and the absolute intracellular steady state concentration of adenosine attained. The latter approaches the extracellular concentration of adenosine, since transport is not rate limiting, except when modulated by transport inhibitors. In spite of the extensive adenosine deamination in cells incubated with 100 microM adenosine, little IMP accumulated intracellularly when the medium phosphate concentration was 1 mM, but IMP formation increased progressively with increase in phosphate concentration to 80 mM. The intracellular phosphoribosylation of adenine and hypoxanthine were similarly dependent on phosphate concentration. The results indicate that adenosine is the main purine source for erythrocytes and is very efficiently taken up and converted to nucleotides under physiological conditions, whereas hypoxanthine and adenine are not significantly salvaged. Hypoxanthine resulting from nucleotide turnover in these cells is expected to be primarily released from the cells. Adenosine was also dephosphorylated in human red cells presumably by 5'-methylthioadenosine phosphorylase, but this reaction seems without physiological significance as it occurs only at high adenosine and phosphate concentrations and if deamination is inhibited.  相似文献   

5.
Adenosine (10 μM) stimulates the initial growth rate of BHK/21 cells seeded at low but not high density in monolayer culture; it does not affect final cell density or permit growth in agar. In labelling experiments With tritiated thymidine, adenosine also increases the response of quiescent cells to low concentrations of serum. Dialysis of serum to remove oxypurines only marginally reduces its effect on quiescent cell labelling or growth, indicating that BHK/21 cells are able to synthesise purines. The response of quiescent cells to 5% serum is inhibited by high MW (2 × 106) dextran sulphate at 2 μg per milliliter. Low MW dextran sulphate (30,000) and heparin at 20 μg per milliliter produce the same effect. Exogenous adenosine (10 μM) prevents this inhibition. Many other purine derivatives replace adenosine for all the above activities but xanthine is completely inactive in all. It, therefore, appears that nucleotide synthesis is a necessary function of these compounds. The growth of cells of a polyoma-virus-transformed BHK/21 line in monolayer is not stimulated by exogenous purine, though their colony-forming ability in agar is increased five-fold. The stimulating effects of exogenous purines on normal BHK/21 cells and the absolute requirement for them in the presence of polyanions is discussed in relation to possible mechanisms of growth control.  相似文献   

6.
A detailed understanding of adenosine metabolism of vascular smooth muscle cells (VSMC) is highly desirable to critically evaluate possible autocrine effects of adenosine in this cell species. Therefore, this study quantified intra- and extracellular adenosine flux rates, the transmembrane concentration gradient, and the adenosine surface concentration in porcine VSMC and, for comparison, aortic endothelial cells (PAEC). Cell-covered microcarrier beads packed in a chromatography column were superfused with a HEPES buffer. With the use of specific inhibitors of adenosine kinase (iodotubericidine, 10 microM), adenosine deaminase [erythro-9-(2-hydroxy-3-nonyl)-adenine, 5 microM], ecto-5'-nucleotidase (alpha,beta-methylene-adenosine 5'-diphosphate, 50 microM), and adenosine membrane transport (n-nitrobenzylthioinosine, 1 microM), total production rates of 12.3 +/- 2.7 and 7.5 +/- 1.3 pmol x min(-1) x microl cell volume(-1) were obtained for VSMC and PAEC, respectively. Despite prevailing intracellular adenosine production (76 and 70% of total production, respectively), transmembrane concentration gradients under control conditions were directed toward the cytosol as a result of rapid intracellular adenosine rephosphorylation and continuous extracellular hydrolysis from 5'-AMP. Surface concentrations were approximately 18 nM in VSMC and PAEC under control conditions and increased to approximately 60 nM during partial inhibition of adenosine metabolism. Simultaneously, the transmembrane adenosine concentration gradient was reversed. We conclude that adenosine flux rates in VSMC and PAEC are quantitatively similar and that VSMC may influence the interstitial adenosine concentration under basal steady-state conditions.  相似文献   

7.
Analysis of the response of baby hamster kidney cells to adenosine in the presence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine has revealed two distinct mechanisms of toxicity. The first is apparent at low concentrations of adenosine (less than 5 microM) and is dependent upon the presence of a functional adenosine kinase. The initial toxicity is abolished by uridine, is unrelated to the inhibition of ribonucleotide reductase, and is accompanied by a decrease in the size of the pyrimidine nucleotide pool. Toxicity at higher concentrations of adenosine is adenosine kinase independent and is potentiated by homocysteine thiolactone. An elevation in the intracellular level of S-adenosylhomocysteine, which was observed following treatment with higher concentrations of adenosine (greater than 10 microM), is believed to mediate toxicity at these levels. Interestingly, BHK cells were resistant to intermediate levels of adenosine. The mechanism of resistance is currently unknown, but appears unrelated to a lack of inhibition of adenosine deaminase. It is proposed that substrate inhibition of adenosine kinase may be a determinant of this property.  相似文献   

8.
9.
Genetic analysis of nucleoside transport in Leishmania donovani.   总被引:4,自引:2,他引:2       下载免费PDF全文
Genetic dissection of nucleoside transport in Leishmania donovani indicates that the insect vector form of these parasites possesses two biochemically distinct nucleoside transport systems. The first transports inosine, guanosine, and formycin B, and the second transports pyrimidine nucleosides and the adenosine analogs, formycin A and tubercidin. Adenosine is transported by both systems. A mutant, FBD5, isolated by virtue of its resistance to growth inhibition by 5 microM formycin B, cannot efficiently transport inosine, guanosine, or formycin B. This cell line is also cross-resistant to growth inhibition by a spectrum of cytotoxic analogs of inosine and guanosine. A second parasite mutant, TUBA5, isolated for its resistance to 20 microM tubercidin, cannot take up from the culture medium radiolabeled tubercidin, formycin A, uridine, cytidine, or thymidine. Both the FBD5 and the TUBA5 cell lines have about a 50% reduced capacity to take up adenosine, indicating that adenosine is transported by both systems. A tubercidin-resistant clonal derivative of FBD5, FBD5-TUB, has acquired the combined biochemical phenotype of each single mutant. The wild-type and mutant cell lines transport purine bases and uracil with equal efficiency. Mutational analysis of the relative growth sensitivities to cytotoxic nucleoside analogs and the selective capacities to take up exogenous radiolabeled nucleosides from the culture medium have enabled us to define genetically the multiplicity and substrate specificities of the nucleoside transport systems in L. donovani promastigotes.  相似文献   

10.
Adenosine is produced during inflammation and modulates different functional activities in macrophages. In murine bone marrow-derived macrophages, adenosine inhibits M-CSF-dependent proliferation with an IC50 of 45 microM. Only specific agonists that can activate A2B adenosine receptors such as 5'-N-ethylcarboxamidoadenosine, but not those active on A1 (N6-(R)-phenylisopropyladenosine), A2A ([p-(2-carbonylethyl)phenylethylamino]-5'-N-ethylcarboxamido adenosine), or A3 (N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide) receptors, induce the generation of cAMP and modulate macrophage proliferation. This suggests that adenosine regulates macrophage proliferation by interacting with the A2B receptor and subsequently inducing the production of cAMP. In fact, both 8-Br-cAMP (IC50 85 microM) and forskolin (IC50 7 microM) inhibit macrophage proliferation. Moreover, the inhibition of adenylyl cyclase and protein kinase A blocks the inhibitory effect of adenosine and its analogues on macrophage proliferation. Adenosine causes an arrest of macrophages at the G1 phase of the cell cycle without altering the activation of the extracellular-regulated protein kinase pathway. The treatment of macrophages with adenosine induces the expression of p27kip-1, a G1 cyclin-dependent kinase inhibitor, in a protein kinase A-dependent way. Moreover, the involvement of p27kip-1 in the adenosine inhibition of macrophage proliferation was confirmed using macrophages from mice with a disrupted p27kip-1 gene. These results demonstrate that adenosine inhibits macrophage proliferation through a mechanism that involves binding to A2B adenosine receptor, the generation of cAMP, and the induction of p27kip-1 expression.  相似文献   

11.
To determine the effects of adenosine on follicle-stimulating hormone (FSH)-induced differentiation, granulosa cells isolated from the ovaries of diethylstilbestrol-treated immature rats were cultured with increasing concentrations of the nucleoside and modulators of adenosine action. Although adenosine had no effect on basal granulosa cell function during 48 h of culture, concentrations of the nucleoside from 10 microM to 1 mM progressively inhibited FSH-induced responses, including progesterone production and expression of FSH and luteinizing hormone (LH) receptors. Adenosine had biphasic effects on FSH-stimulated cAMP accumulation, causing inhibition of cAMP production at 10 to 100 microM and stimulation at higher concentrations. The enhancement of cAMP production by 1 mM adenosine occurred during the first 24 h of culture, while both 100 microM and 1 mM adenosine reduced FSH-stimulated cAMP production from 24 to 48 h. The inhibitory effects of adenosine were prevented by adenosine deaminase and dipyridamole, an inhibitor of adenosine transport, and were antagonized by 1-methyl-3-isobutylxanthine. The inhibition of cAMP and progesterone production by adenosine was partially overcome when cells were washed and reincubated with forskolin, but not with FSH. Adenine, guanosine, and inosine at concentrations of 100 microM did not modify FSH-induced cAMP formation or LH receptor induction. These results indicate that adenosine exerts predominantly inhibitory actions on hormone-induced granulosa cell differentiation, as manifested by prominent reductions in steroidogenesis and gonadotropin receptor expression.  相似文献   

12.
Since extracellular ATP can exhibit cytotoxic activity in vivo and in vitro, its application has been proposed as an alternative anticancer therapy. In this study we investigated the mechanisms of ATP-induced cytotoxicity in a human leukemic cell line (U-937). ATP added as a single dose exceeding 50 microM was cytostatic or even cytotoxic for U-937 cells. Interestingly, growth inhibition by ATP (50-3500 microM) showed a biphasic dose response. Up to 800 microM, ATP was cytotoxic in a dose-dependent manner (EC(50) 90 microM). In a range between 800 and 2500 microM, cell count was markedly higher despite the higher ATP concentrations. The cytotoxic effect of ATP could be antagonized by addition of uridine as a pyrimidine source and, alternatively, by addition of the nucleoside transmembrane inhibitor dipyridamole. The apoptosis-inducing adenosine A(3) receptor was not involved in measurable quantities, since (1) adenosine did not lead to an elevation of intracellular calcium levels, and (2) an unselective A(1-3) antagonist (ULS-II-80) could not abrogate the cytotoxic effect. Experiments monitoring extracellular nucleotide metabolism confirmed the assumption that the long-term production and continuous uptake of adenosine, which is extracellularly generated by degradation of ATP, led to an intracellular nucleotide imbalance with pyrimidine starvation. The biphasic dose response to higher ATP concentrations could be explained by the rapid degradation of lower ATP concentrations (300 microM) to adenosine by serum-derived enzymes, whereas higher concentrations (900 microM) only produced small amounts of adenosine due to forward inhibition of AMP hydrolysis by prolonged high ADP levels. FACS analysis revealed that at lower adenosine concentrations (300 microM) a reversible G(1) phase arrest of the cell cycle was induced, whereas higher concentrations (1000 microM) triggered apoptosis. Considering ATP as a potential cytostatic drug, our data have important implications concerning metabolic interactions of administered nucleotides.  相似文献   

13.
The biochemical and metabolic effects of deoxycoformycin, a potent inhibitor of adenosine deaminase, were investigated using two human T lymphoblastoid cell lines. A dose-response analysis demonstrated that the concentration of deoxycoformycin at which there was 50% inhibition of growth was greater than 1 X 10(-3) M in lymphoblastoid cells. Uptake of deoxycoformycin was biphasic and occurred much more slowly than for natural nucleosides, and lower saturation levels were reached. The intracellular concentration of deoxycoformycin achieved was 0.4 to 0.5 microM when the extracellular concentration was 1 microM. At 10 microM extracellular concentration, the intracellular concentration was 3-4 microM. Although deoxycoformycin at very low concentrations (1 or 10 microM) did not have any detectable effects on the growth of these cells, the nucleoside was found to be metabolized, and was phosphorylated to give the mono-, di-, and triphosphate derivatives. The triphosphate derivative was incorporated into cellular DNA with little incorporation into cellular RNA. Metabolism of deoxycoformycin in several mutant lymphoblastoid cells deficient in adenosine kinase and/or deoxycytidine kinase was found to be unchanged from wild-type cells, indicating that these major nucleoside kinases do not play a significant role in the phosphorylation of deoxycoformycin. These results may account, at least in part, for the differences that are observed between the pharmacologic inhibition of adenosine deaminase, and the inherited deficiency of adenosine deaminase.  相似文献   

14.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occured with 10 μM and half-maximal inhibition at 100 μM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their mondification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

15.
N,N′-Dicyclohexylcarbodiimide (DCCD), an inhibitor of membrane-bound ATPase, strongly inhibited the growth, as measured by an increase in cell number, of Dunaliella tertiolecta. However, this inhibition was reversed by simultaneous application of adenosine 5′-triphosphate (ATP) or adenosine 2′-monophosphate (2′-AMP). Adenosine and adenosine 5′-diphosphate (ADP) were ineffective in restroration of the DCCD-inhibited growth. Gibberellin A3 (GA3) and 2,4- dichlorophenoxyacetic acid (2,4-D) also reversed the inhibition of DCCD on D. tertiolecta growth, although these plant growth regulators did not promote an increase in cell number.  相似文献   

16.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occurred with 10 muM and half-maximal inhibition at 100 muM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their modification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

17.
1. Adenosine inhibits thymidine and uridine incorporation of PHA-stimulated lymphocytes of man and horse at concentrations higher than 50 and 10 microM, respectively. Deoxyadenosine is inhibitory at concentrations higher than 100 microM. Thymidine and uridine incorporation of porcine lymphocytes are elevated 5-7-fold by 25-100 microM adenosine, deoxyadenosine, inosine and hypoxanthine. Leucine incorporation of PHA-stimulated lymphocytes was affected by adenosine and deoxyadenosine in the same way, but to a lower extent. 2. Effects of adenosine and deoxyadenosine were more pronounced at shorter cultivation times. 3. EHNA potentiated the effects of adenosine and deoxyadenosine on human and equine lymphocytes. With human lymphocytes inhibition by deoxyadenosine and EHNA was higher than by adenosine and EHNA. With porcine lymphocytes only the combination of deoxyadenosine and EHNA was inhibitory. 4. Homocysteine potentiated the inhibition of thymidine incorporation by the combination of adenosine and deoxyadenosine with equine lymphocytes, but not the inhibition of adenosine or deoxyadenosine alone. 5. Adenosine suppressed the PHA-stimulated elevation of PRPP concentrations. With porcine lymphocytes PRPP remained at the level of 0 hr, while with equine lymphocytes PRPP concentration decreased to below that level. 6. The various effects of adenosine and deoxyadenosine on lymphocytes of man, horse and pig can partially be related to differences in adenosine and deoxyadenosine metabolism.  相似文献   

18.
The dose response effect of a new adenosine analogue, GR 79236 (N-[1S trans-2-hydroxycyclopentyl] adenosine) upon insulin sensitivity was examined in human adipocytes. The influence of adenosine upon insulin sensitivity for suppression of lipolysis and stimulation of glucose transport was examined. Removal of adenosine by use of adenosine deaminase stimulated lipolysis to the same extent as did 10–9 M noradrenaline. GR79236 brought about dose dependent inhibition of lipolysis with half-maximal effect at 11.3±7.8×10–9 M. When lipolysis was stimulated by noradrenaline alone the subsequent inhibition of lipolysis brought about by GR79236 was significantly greater than that of insulin. To examine adenosine effects on the insulin signalling pathway separately from those on lipolysis, the insulin sensitivity of glucose transport was examined. Removal of adenosine brought about a small but significant increase in the concentration of insulin required for half-maximal stimulation of glucose transport. Adenosine agonists offer promise as new agents for the modulation of metabolism in diabetes and other states of insulin resistance.  相似文献   

19.
Adenosine, a potent autacoid produced and released in kidneys, affects nearly all aspects of renal function, and an increase in cytosolic calcium has been implicated in adenosine effects. The aim of this work was to investigate whether adenosine modifies the calcium pump present in basolateral membranes of kidney proximal tubule cells. Adenosine exerts a biphasic influence on (Ca2+ + Mg2+)-ATPase activity. Inhibition occurs up to 0.1 microM and then gradually disappears as the adenosine concentration increases to 100 microM, an effect mimicked by the adenosine analog N6-cyclohexyladenosine, which preferentially binds to A1-type receptors. In contrast, the A2 receptor agonist 5', N-ethylcarboxamideadenosine is ineffective. The A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine blocks the inhibitory effect of 0.1 microM adenosine and stimulates (Ca2+ + Mg2+)-ATPase activity in the presence of 1 mM adenosine, a concentration high enough to occupy the low-affinity A2 receptors. Inhibition by adenosine increases as medium ATP is lowered to micromolar concentrations, is maintained in the presence of pertussis toxin, and is completely abolished with 0.1 microM cholera toxin or 1 microM sphingosine. The inhibitory effect of adenosine can be reproduced by guanosine 5'-[gamma-thio]triphosphate, inositol 1,4, 5-trisphosphate or the diacylglycerol analog 12-O-tetradecanoylphorbol 13-acetate. In conjunction with the selectivity for its analogs and for its receptor agonist, the concentration profile of adenosine effects indicates that both inhibitory (A1) and stimulatory (A2) receptors are involved. The results obtained with the toxins indicate that a pathway that is modulated by G-proteins, involves a phospholipase C and a protein kinase C, and is affected by local variations in adenosine concentrations participates in the regulation of the (Ca2+ + Mg2+)-ATPase resident in basolateral membranes of kidney proximal tubules.  相似文献   

20.
In an attempt to determine the metabolic defect causing severe combined immunodeficiency (SCID) in horses in which altered purine metabolism has been observed, various parameters of purine and pyrimidine metabolism were evaluated. The activities of nine purine enzymes (adenosine kinase, purine nucleoside phosphorylase, deoxyadenosine kinase, deoxycytidine kinase, 5'-nucleotidase, AMP deaminase, hypoxanthine-guanine phosphoribosyl transferase, and adenine phosphoribosyl transferase were measured in fibroblasts. All activities determined for SCID horses were normal. Uptake of 10 microM adenosine or 2'-deoxyadenosine (a growth inhibitory concentration for SCID fibroblasts) by SCID fibroblasts was identical to that found for normal fibroblasts in the presence of both 1 and 50 microM phosphate. The Km determined for the transport of both adenosine and 2'-deoxyadenosine was 35 microM. In the presence of p-nitrobenzylthioguanosine (a nucleoside transport inhibitor), 2'-deoxyadenosine uptake was inhibited to the same extent in all fibroblast lines tested. To determine if the last step in pyrimidine biosynthesis might be altered in SCID fibroblasts, UMP synthase activities were evaluated but found to be normal (0.5 nmol UMP formed/min/mg protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号