首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml(-1) was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of < or = 10 mg ml(-1). Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml(-1) in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs.  相似文献   

2.
Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml−1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of ≤10 mg ml−1. Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml−1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs.  相似文献   

3.
Ethanolic extracts of olive callus tissues, added at 0.5 or 1.0% to media on which Aspergillus flavus was grown, inhibited aflatoxin production by 90% without inhibiting the fungal growth. The extract was found to contain mainly caffeic acid and, to a lesser extent, catechin and coumarins. The fungicidal and bactericidal activity of caffeic acid, catechin, coumarin and p-, o- or m-coumaric acid were tested and only caffeic acid and o-coumaric acid inhibited aflatoxin production. The inhibitory effect had no correlation with the growth of the fungus. Only coumarin at 10 mmol/1 totally inhibited fungal growth. Of the phenolic constituents of callus tissues tested, catechin and caffeic acid (10 mmol/l) showed bactericidal activity towards Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   

4.
Ethanolic extracts of olive callus tissues, added at 0.5 or 1.0% to media on which Aspergillus flavus was grown, inhibited aflatoxin production by 90% without inhibiting the fungal growth. The extract was found to contain mainly caffeic acid and, to a lesser extent, catechin and coumarins. The fungicidal and bactericidal activity of caffeic acid, catechin, coumarin and p-, o- or m-coumaric acid were tested and only caffeic acid and o-coumaric acid inhibited aflatoxin production. The inhibitory effect had no correlation with the growth of the fungus. Only coumarin at 10 mmol/1 totally inhibited fungal growth. Of the phenolic constituents of callus tissues tested, catechin and caffeic acid (10 mmol/1) showed bactericidal activity towards Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   

5.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) causes intracellular superoxide production and oxidative stress and enhances the susceptibility of Saccharomyces cerevisiae, Candida albicans, and C.?glabrata cells to cycloheximide, 5-fluorocytosine, and azole antimycotic drugs. Here, we demonstrate the antifungal activity of CTBT against 14 tested filamentous fungi. CTBT prevented spore germination and mycelial proliferation of Aspergillus niger and the pathogenic Aspergillus fumigatus. The action of CTBT is fungicidal. CTBT increased the formation of reactive oxygen species in fungal mycelium as detected by 2',7'-dichlorodihydrofluorescein diacetate and reduced the radial growth of colonies in a dose-dependent manner. Co-application of CTBT and itraconazole led to complete inhibition of fungal growth at dosages lower than the chemicals alone. Antifungal and chemosensitizing activities of CTBT in filamentous fungi may be useful in combination treatments of infections caused by drug-resistant fungal pathogens.  相似文献   

6.
PMAP-23 is a 23-mer peptide derived from porcine myeloid. To develop novel antifungal peptides useful as therapeutic drugs, it would require a strong fungicidal activity against pathogenic fungal cells. To this goal, several analogs, with amino acid substitutions, were designed to increase the net hydrophobicity by Trp (W)-substitution at positions 10, 13, or 14 at the hydrophilic face of PMAP-23 without changing the hydrophobic helical face. The Trp (W)-substitution (P6) showed an enhanced fungicidal and antitumor activities, with the fungicidal activity inhibited by salts and the respiratory inhibitor, NaN(3). The results suggested that the increase of hydrophobicity of the peptides correlated with fungicidal activity. The fungicidal effects of analog peptides were further investigated using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a membrane probe. In Candida albicans, the analog peptide (P6) exerted its fungicidal effect on the blastoconidia in 20% fetal bovine serum by disrupting the mycelial forms. Furthermore, P6 caused significant morphological changes, and these facts suggested that the fungicidal function of the novel analog peptide (P6) was by damaging the fungal cell membranes. Thus, this peptide may provide a useful template for designing novel antifungal peptides useful for the treatment of infectious diseases.  相似文献   

7.
We previously proposed that extractives in highly durable heartwood may protect wood against fungal colonization and subsequent degradation by dual mechanisms: the extractives have some fungicidal activity and are also free radical scavengers (antioxidants). In short-term laboratory decay tests using two different wood species and decay fungi, the antioxidant 2,6-dimethyl-di-tert-butyl-4-methylphenol (BHT) alone had little or no preservative effect. In contrast, the combination of BHT with different organic commercial biocides always showed an increase in efficacy compared to the organic biocide alone. Consequently, we conclude that the combination of a commercial antioxidant and biocide is synergistic. This implies that extractives may protect wood by more than simply being fungicidal.  相似文献   

8.
In this work the method of serial dilutions of lactobacilli in two-layer agar was used. On the agar surface bacterial or fungal cultures were applied at different time intervals. A special quantitative characteristic was introduced. L. plantarum strain 8P-A3 was shown to have the maximum antagonistic activity. In great amounts L. casei and L. reuteri are capable to suppress the growth of bacteria and fungi. All lactobacilli under study produced a pronounced bactericidal effect on Pseudomonas, had different influence on the viability of Escherichia and staphylococci and exhibited fungistatic and fungicidal action only when inoculated at high concentrations.  相似文献   

9.
Bacillus pumilus NCIMB 13374 and Pseudomonas fluorescens NCIMB 13373 inhibit the growth of Botrytis cinerea , the cause of grey mould of strawberries. Both antagonists increased the pH of the growth medium from pH 6 to pH 8-8.5 and both produced antifungal agents. The compound(s) produced by B. pumilus had a fungicidal effect during conidial germination, whereas the compound(s) produced by P. fluorescens had a fungistatic effect. There was no evidence for the production of inhibitory volatile compounds. Both isolates also showed the ability to inhibit other strawberry fungal pathogens, and have potential for a wider range of biocontrol of plant diseases.  相似文献   

10.
AIMS: To develop a natural fungicide against aflatoxigenic fungi, to protect stored rice, using the essential oil of lemongrass. METHODS AND RESULTS: Aspergillus flavus Link. was isolated from stored rice and identified as an aflatoxigenic strain. Lemongrass oil was tested against A. flavus and the test oil was fungistatic and fungicidal against the test pathogen at 0.6 and 1.0 mg ml(-1), respectively. Aflatoxin production was completely inhibited at 0.1 mg ml(-1). The results obtained from the thin layer chromatographic bioassay and gas chromatography indicated citral a and b as the fungicidal constituents in lemongrass oil. During the fumigant toxicity assay of lemongrass oil, the sporulation and the mycelial growth of the test pathogen were inhibited at the concentrations of 2.80 and 3.46 mg ml(-1), respectively. CONCLUSION: Lemongrass oil could be used to manage aflatoxin formation and fungal growth of A. flavus in stored rice. SIGNIFICANCE AND IMPACT OF THE STUDY: Currently, fungicides are not used to control fungal pests or mycotoxin production on stored rice. Rice treated with the essential oil of lemongrass could be used to manage fungal pests as well as the insect pests in stored rice. The essential oil is chemically safe and acceptable to consumers, as synthetic chemical fungicides can cause adverse health effects to consumers.  相似文献   

11.
The incidence of invasive fungal infections is increasing in recent years. The present study mainly investigated glabridin (Gla) alone and especially in combination with fluconazole (FLC) against Cryptococcus neoformans and Candida species (Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis and Candida Glabratas) by different methods. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) indicated that Gla possessed a broad-spectrum antifungal activity at relatively high concentrations. After combining with FLC, Gla exerted a potent synergistic effect against drug-resistant C. albicans and C. tropicalis at lower concentrations when interpreted by fractional inhibitory concentration index (FICI). Disk diffusion test and time-killing test confirming the synergistic fungicidal effect. Cell growth tests suggested that the synergistic effect of the two drugs depended more on the concentration of Gla. The cell envelop damage including a significant decrease of cell size and membrane permeability increasing were found after Gla treatment. Together, our results suggested that Gla possessed a synergistic effect with FLC and the cell envelope damage maybe contributed to the synergistic effect, which providing new information for developing novel antifungal agents.  相似文献   

12.
AIMS: To determine whether Ha-AP10, a member of the plant lipid transfer proteins (LTPs) family produces a direct cytotoxic effect on fungal cells mediated by membrane permeabilization. LTPs can inhibit fungal growth and are considered members of the ubiquitous class of antimicrobial peptides. However, the way they exert their effects on target cells is not yet understood. METHODS AND RESULTS: Viability assays demonstrate that Ha-AP10 acts as a fungicidal compound but no harmful effect is observed on plant cells. Liposome leakage assays show that the protein induces a moderate release of fluorescent probes encapsulated in model membranes, indicating its ability to interact with phospholipids. Using a fluorescent indicator of damage at the membrane level, we demonstrate that Ha-AP10 is able to induce the permeabilization of intact fungal spores in a dose-dependent manner. CONCLUSION: The results presented here demonstrate the permeabilization of fungal spores caused by Ha-AP10. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first demonstration of fungal membrane damage by an LTP, giving a clue to elucidate the basis of its antimicrobial properties.  相似文献   

13.
The lipopeptide antibiotic fengycin, produced by Bacillus subtilis, strongly inhibits growth of filamentous fungi. In this study, we evaluated the effects of fengycin treatment on apoptosis and necrosis in Rhizopus stolonifer by means of cell staining and epifluorescence microscopy. At fengycin concentrations less than 50 μg/ml, treated fungal cells demonstrated a dose-dependent increase in apoptosis-associated markers compared with the untreated control. These markers included chromatin condensation, reactive oxygen species accumulation, mitochondrial membrane potential depolarization, phosphatidylserine externalization, and the occurrence of DNA strand breaks. These results showed that fungal cells were impaired in a number of important functions and entered apoptosis upon treatment with low concentrations of fengycin. In contrast, high concentrations (>50 μg/ml) induced necrosis, indicating that the fungicidal action of fengycin operates via two modes: apoptosis at low concentrations and necrosis at high concentrations. Additionally, the apoptotic effect that we have shown suggests that lower concentrations of fengycin than previously thought may be effective for food preservation.  相似文献   

14.
Eleven plant species were collected from the Blyde River Canyon area, Mpumalanga, South Africa. Methanolic crude extracts of the plant samples were concentrated to dryness, dissolved in sterile distilled water and bioassayed in the laboratory for their fungicidal potential against seven plant fungal pathogens, namely Botrytis cinerea, Fusarium oxysporum, Sclerotium rolfsii, Rhizoctonia solani, Verticillium dahliae, Botryosphaeria dothidea and Pythium ultimum, at equal concentrations. A modified agar dilution method was used to determine the inhibitory effect of the plant extracts on the mycelial radial growth of the plant pathogens. Antifungal activity was confirmed in all the plants, but not in all plant parts and also not against all the test organisms. The crude extract of Eucomis autumnalis performed best of all the plant extracts tested, as it showed significant antifungal activity against all seven of the plant pathogenic test organisms and compared favourably to the inhibition of the mycelial growth by a broad spectrum synthetic fungicide (carbendazim/ difenoconazole). The crude extract of Schrebera alata came out second best, in the sense that at least one plant part inhibited the mycelial radial growth of four of the seven test organisms by at least 50%.  相似文献   

15.
Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.  相似文献   

16.
In the electron-microscopic study of the interaction of neutrophil granulocytes with the fungal species C. albicans in the process of the formation of mycotic foci in mice under the conditions of cyclophosphamide-induced immunosuppression, mouse leukocytes have been found to retain their capacity for migration to the focus of inflammation and for the phagocytosis of fungal cells. At the same time the fungicidal activity of leukocytes is decreased, which is manifested by the prevalence of viable fungal cells with the partially digested cell wall in the cytoplasm of leukocytes.  相似文献   

17.
The aim of this study was to determine the in vitro fungicidal and growth inhibitory activity of ciclopirox olamine alone (1% and 1.5%) or in association with 1% zinc pyrithione compared to 2% ketoconazole, against Malassezia species particularly involved in the pathogenesis of seborrheic dermatitis. Experiments were performed on Malassezia globosa IP 2387.96 and M. restricta IP 2392.96 strains. Growth inhibitory activity of the active compounds in solution was evaluated by measuring minimal inhibitory concentrations using a broth micro-method and their fungicidal activity by a filtration method after contact times between solutions and yeasts ranging from 3–5 to 30 min. Concerning the determination of minimal inhibitory concentration of ciclopirox olamine/zinc pyrithione, it revealed the marked synergistic inhibitory effect of the association, leading to a higher efficacy compared to ketoconazole. As to the fungicidal activity of ciclopirox olamine, it significantly increased with the contact time. After 15–30 min of contact between 1.5% ciclopirox olamine and Malassezia strains, a 2-log reduction of Malassezia counts was observed. The 1.5% ciclopirox olamine/1% zinc pyrithione association was characterized by a steady fungicidal efficacy whereas the 2% ketoconazole solution did not express any fungicidal effect. In conclusion, this study demonstrates the in vitro inhibitory and fungicidal efficacy of the ciclopirox olamine/zinc pyrithione association against Malassezia species and underscores its potential interest in the treatment of seborrheic dermatitis.  相似文献   

18.
Candida glabrata infections are often difficult to eradicate due to the intrinsically low susceptibility to azoles of this species. In addition, C. glabrata has also been shown to be insensitive to several cationic peptides, which have been shown to be promising novel therapeutic candidates for the treatment of fungal infection. In this study, the in vitro fungicidal activity of the human cationic peptide hepcidin 20 (Hep-20) was evaluated against clinical isolates of C. glabrata with different levels of fluconazole susceptibility. Interestingly, all isolates were susceptible to Hep-20 (100–200 μg/ml) at pH 7.4, whereas the fungicidal effect of the peptide was higher (50 μg/ml) at acidic pH values. In addition, an increased antifungal activity was observed for Hep-20 with amphotericin B and a synergistic effect was demonstrated for the Hep-20/fluconazole and Hep-20/caspofungin combinations.  相似文献   

19.
A novel series of heterocyclic-1,2 diazole namely N1-iso nicotinoyl-5,5'-dimethyl cyclohexane-4-(sulpha/substituted phenylazo)-1,2-diazoles have been synthesized. The compounds were screened for the anti-fungal properties against building fungi. The fungal species used for this purpose were Aspergillus niger and Pencillium frequentans. It was found that out of a series of 25 compounds, fourteen have shown significant fungicidal properties against both the above species. Minimum inhibition concentration was observed between 100 and 200 ppm for most of the compounds.  相似文献   

20.
The importance of copper–ethanolamine-based wood preservatives is increasing. These preservatives usually consist of copper as a fungicide, ethanolamine as a fixative, and secondary fungicides (boron, triazoles) and other additives (water repellents, fixatives, wax emulsions, etc.). Questions arise as to how each of these ingredients interacts with wood-decay fungi, and whether there are any synergistic effects between the components. In order to elucidate these questions, Norway spruce wood specimens were impregnated with five different aqueous solutions consisting of one single component only and of complete formulation of five different concentrations. These specimens were exposed to two brown-rot fungi, Antrodia vaillantii and Gloeophyllum trabeum, as well as to the white-rot fungus Trametes versicolor for 8 weeks according to mini block procedure. In parallel, petri dishes with nutrient medium containing different quantities of ingredients and of complete wood preservative were inoculated with the same fungal species, and their growth was compared with growth on media without chemicals. The results showed that both experimental methods give similar results. In general, there was no synergistic effect determined. Ethanolamine did not decrease fungicidal properties of the system, while on the other hand octanoic acid has a positive effect on the growth of brown-rot fungi. The minimal effective concentration of tested copper–ethanolamine preservative was determined by the minimum effective concentration of the most fungi-toxic ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号