首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Key message

The dwarfing gene Rht24 on chromosome 6A acts in the wheat population ‘Solitär × Bussard’, considerably reducing plant height without increasing Fusarium head blight severity and delaying heading stage.

Abstract

The introduction of the Reduced height (Rht)-B1 and Rht-D1 semi-dwarfing genes led to remarkable increases in wheat yields during the Green Revolution. However, their utilization also brings about some unwanted characteristics, including the increased susceptibility to Fusarium head blight. Thus, Rht loci that hold the potential to reduce plant height in wheat without concomitantly increasing Fusarium head blight (FHB) susceptibility are urgently required. The biparental population ‘Solitär × Bussard’ fixed for the Rht-1 wild-type alleles, but segregating for the recently described gibberellic acid (GA)-sensitive Rht24 gene, was analyzed to identify quantitative trait loci (QTL) for FHB severity, plant height, and heading date and to evaluate the effect of the Rht24 locus on these traits. The most prominent QTL was Rht24 on chromosome 6A explaining 51% of genotypic variation for plant height and exerting an additive effect of ? 4.80 cm. For FHB severity three QTL were detected, whereas five and six QTL were found for plant height and heading date, respectively. No FHB resistance QTL was co-localized with QTL for plant height. Unlike the Rht-1 semi-dwarfing alleles, Rht24b did not significantly affect FHB severity. This demonstrates that the choice of semi-dwarfing genes used in plant breeding programs is of utmost consideration where resistance to FHB is an important breeding target.
  相似文献   

2.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

3.
Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat   总被引:12,自引:0,他引:12  
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes for bread wheat improvement. In this study, the chromosomal locations of several height-reducing genes were determined by screening populations of recombinant inbred lines or doubled haploid lines varying for plant height with microsatellite markers. Linked markers were found for Rht5 (on chromosome 3BS), Rht12 (5AL) and Rht13 (7BS), which accounted for most of the phenotypic variance in height in the respective populations. Large height differences between genotypes (up to 43 cm) indicated linkage to major height-reducing genes. Rht4 was associated with molecular markers on chromosome 2BL, accounting for up to 30% of the variance in height. Confirming previous studies, Rht8 was linked to markers on chromosome 2DS, whereas a population varying for Rht9 revealed a region with a small but significant height effect on chromosome 5AL. The height-reducing effect of these dwarfing genes was repeatable across a range of environments. The molecular markers developed in this study will be useful for marker-assisted selection of alternative height-reducing genes, and to better understand the effects of different Rht genes on wheat growth and agronomic performance.  相似文献   

4.
We report the effect of the reduced-height alleles Rht1 and Rht2 on the breaking strength and breaking stress of the first foliage leaves of wheat seedlings. Transverse size variables such as blade transverse area and blade width were positively related to the breaking strength and breaking stress of leaves, as was the total wall area of the principal fiber strands. A negative correlation was found for the Rht-dosage with respect to the breaking strength. Because Rht plants had greater transverse dimensions and equal amounts of principal fiber strands compared to wild type, we posit that Rht may affect the mechanical quality of leaf tissues per se. Rht may serve as an example of a simple genetic system that profoundly affects plant morphology, development, and biomechanics.  相似文献   

5.
6.

Key message

The portfolio of available Reduced height loci (Rht-B1, Rht-D1, and Rht24) can be exploited for hybrid wheat breeding to achieve the desired heights in the female and male parents, as well as in the hybrids, without adverse effects on other traits relevant for hybrid seed production.

Abstract

Plant height is an important trait in wheat line breeding, but is of even greater importance in hybrid wheat breeding. Here, the height of the female and male parental lines must be controlled and adjusted relative to each other to maximize hybrid seed production. In addition, the height of the resulting hybrids must be fine-tuned to meet the specific requirements of the farmers in the target regions. Moreover, this must be achieved without adversely impacting traits relevant for hybrid seed production. In this study, we explored Reduced height (Rht) loci effective in elite wheat and exploited their utilization for hybrid wheat breeding. We performed association mapping in a panel of 1705 wheat hybrids and their 225 parental lines, which besides the Rht-B1 and Rht-D1 loci revealed Rht24 as a major QTL for plant height. Furthermore, we found that the Rht-1 loci also reduce anther extrusion and thus cross-pollination ability, whereas Rht24 appeared to have no adverse effect on this trait. Our results suggest different haplotypes of the three Rht loci to be used in the female or male pool of a hybrid breeding program, but also show that in general, plant height is a quantitative trait controlled by numerous small-effect QTL. Consequently, marker-assisted selection for the major Rht loci must be complemented by phenotypic selection to achieve the desired height in the female and male parents as well as in the wheat hybrids.
  相似文献   

7.
Reduced height (Rht)-1 and Photoperiod (Ppd) have major effects on the adaptability of bread wheat (Triticum aestivum) to specific environments. PpdD1a is a photoperiod insensitive allele that reduces time to flowering. The gibberellin (GA) insensitive alleles RhtB1b and RhtD1b shorten plant stature and were important components of the ‘green revolution’. Two additional RhtB1 alleles were recently identified that contain a 160 or 197 bp insertion upstream of the coding region and may affect plant height or GA sensitivity Wilhelm et al. (Theor Appl Gen doi:10.1007/s00122-013-2088-7, 2013b). We determined the frequency of the five alleles in a worldwide core collection of 372 wheat accessions (372CC) and estimated their effects on height, days to heading, and GA sensitivity when the collection was grown in pots outdoors or in the glasshouse. This revealed that each allele was widespread geographically with frequencies ranging from 0.12 to 0.25. Ppd-D1a was associated with significant (p ≤ 0.05) reductions in days to heading and height relative to photoperiod sensitive Ppd-D1b. Relative to wild type, Rht-B1b and Rht-D1b each resulted in significant reductions in height (approximately 30 %) and GA sensitivity. The 160 and 197 bp alleles were associated with significant height reductions of 18 and 12 %, respectively, and with non-significant reductions in GA sensitivity relative to wild type. Two statistical methods were developed and used to estimate GA sensitivity of the 372CC accessions, but novel GA insensitive alleles were not identified. Further characterization of the Rht-B1 insertion alleles is required, but our results suggest these may enable fine adjustments in plant height.  相似文献   

8.
The gibberellin insensitivity genes, Rht1 and Rht2, reducedepidermal cell lengths in leaves of isogenic lines of field-and laboratory-grown wheat (Triticum aestivum L.). Rht dosagesof zero (wild type), two (semi-dwarf) and four alleles (doubledwarf) had a linear negative effect on cell length in flag leavesof field-grown plants, and in the sheaths and blades of leafnumber 1 in laboratory grown plants. Decrease in cell length,rather than reduced cell number, accounted for most to all ofthe reduction in blade and sheath length. In sheaths, cell widthincreased with Rht dosage, but not sufficiently to compensatefor decreased length in determining average projected surfacearea. Rates of extension of leaf number 1 in laboratory-grownplants were negatively and linearly correlated with Rht dosage.Maximal growth rate was maintained longer in wild type thanin double dwarf, but the total duration of measurable extensionin leaf number 1 was not affected by Rht dosage. Cell size, elongation, Rht, wheat, Triticum aestivum L  相似文献   

9.
Plant height is among the most important agronomic traits that influence crop yield. However, in addition to the Rht‐1 alleles, the molecular basis of plant height in bread wheat remains largely unclear. Based on wheat gene expression profiling analysis, we identify a light‐regulated gene from bread wheat, designated as TaCOLD1, whose encoding protein is homologous to cold sensor COLD1 in rice. We show that TaCOLD1 protein is localized to the endoplasmic reticulum (ER) and plasma membrane. Phenotypic analyses show that overexpression of a mutated form of TaCOLD1 (M187K) in bread wheat cultivar Kenong199 (Rht‐B1b) background resulted in an obvious reduction in plant height. Further, we demonstrate that the hydrophilic loop of TaCOLD1 (residues 178–296) can interact with TaGα‐7A (the α subunit of heterotrimeric G protein) protein but not TaGα‐1B, and the mutation (M187K) in TaCOLD1 remarkably enhances its interaction with TaGα‐7A. Physical interaction analyses show that the C‐terminal region of TaGα‐7A, which is lacking in the TaGα‐1B protein, is necessary for its interaction with TaCOLD1. Intriguingly, the C‐terminal region of TaGα‐7A is also physically associated with the TaDEP1 protein (an atypical Gγ subunit). Significantly, we discover that TaCOLD1 and mTaCOLD1 (M187K) can interfere with the physical association between TaGα‐7A and TaDEP1. Together, this study reveals that TaCOLD1 acts as a novel regulator of plant height through interfering with the formation of heterotrimeric G protein complex in bread wheat and is a valuable target for the engineering of wheat plant architecture.  相似文献   

10.
 Wheat microsatellite WMS 261 whose 192-bp allele has been shown to be diagnostic for the commercially important dwarfing gene Rht8 was used to screen over 100 wheat varieties to determine the worldwide spread of Rht8. The results showed Rht8 to be widespread in southern European wheats and to be present in many central European wheats including the Russian varieties ‘Avrora’, ‘Bezostaya’ and ‘Kavkaz’. Rht8 appears to be of importance to South European wheats as alternative giberellic acid (GA)-insensitive dwarfing genes do not appear to be adapted to this environment. The very successful semi-dwarf varieties bred by CIMMYT, Mexico, for distribution worldwide have been thought to carry Rht8 combined with GA-insensitive dwarfing genes. Additional height reduction would have been obtained from pleiotropic effects of the photoperiod-response gene Ppd1 that is essential to the adaptability of varieties bred for growing under short-winter days in tropical and sub-tropical areas. The microsatellite analysis showed that CIMMYT wheats lack Rht8 and carry a WMS 261 allelic variant of 165 bp that has been associated with promoting height. This presumably has adaptive significance in partly counteracting the effects of other dwarfing genes and preventing the plants being too short. Most UK, German and French wheats carry an allelic variant at the WMS 261 locus with 174 bp. This could be selected because of linkage with the recessive photoperiod-sensitive ppd1 allele that is thought to offer adaptive significance northern European wheats. Received: 17 October 1997 / Accepted: 12 November 1997  相似文献   

11.
Dwarfing genes and cell dimensions in different organs of wheat   总被引:1,自引:0,他引:1  
A field experiment was conducted under non-limiting water and nutritional conditions with three near-isogenic lines of spring wheat (dwarf, DD; semi-dwarf, SD and standard height, SH) to study the impact of the GA-insensitive alleles Rht1 and Rht2, at the cellular level, on the growth of different vegetative organs and of the pericarp of grains. Cell length and width of blades of different leaves (3, 7 and flag leaf), the flag-leaf sheath and the penultimate internode as well as the pericarp of basal grains from central spikelets of the spike were evaluated. With the exception of the flag leaf, dwarfing genes produced a significant reduction in cell length in all the different vegetative organs analysed. There was no effect on the number of cells nor their width. Therefore, in vegetative organs, the effects of these alleles appeared to be exclusively due to a reduction in cell length. It would appear that dwarfing genes act on cell elongation without affecting cell division.The Rht alleles did not modify cell length nor width in the pericarp. Grain weight was different between the lines and these differences were associated with grain volume at the beginning of linear grain growth. Thus, they reduced the size of individual grains by reducing the total number of cells in the pericarp.It appears that Rht alleles reduced the final sizes of vegetative organs (such as internodes and leaves) and of tissues (pericarp) associated with reproductive structures (grains), but the modes of action in these different organs were different.Keywords: Cell dimensions, plant height, Rht alleles, Triticum aestivum/wheat.   相似文献   

12.
赤霉素作为重要的植物激素,参与了植物诸多发育过程的调控.一些涉及赤霉素生物合成和信号传导途径的重要调控基因对作物的株型、产量和品质能够产生积极的影响,已在农业生产中得到广泛应用.其中,Rht-1和sd-1等位基因由于分别赋予了小麦和水稻半矮化的特性,从而促成了20世纪后半叶的"绿色革命".本文回顾了与"绿色革命"相关的...  相似文献   

13.
Recombination during meiosis plays an important role in genome evolution by reshuffling existing genetic variations into fresh combinations with the possibility of recovery of lost ancestral genotypes. While crossover (CO) events have been well studied, gene conversion events (GCs), which represent non‐reciprocal information transfer between chromosomes, are poorly documented and difficult to detect due to their relatively small converted tract size. Here, we document these GC events and their phenotypic effects at an important locus in rice containing the SD1 gene, where multiple defective alleles contributed to the semi‐dwarf phenotype of rice in the ‘Green Revolution’ of the 1960s. Here, physical separation of two defects allows recombination to generate the wild‐type SD1 gene, for which plant height can then be used as a reporter. By screening 18 000 F2 progeny from a cross between two semi‐dwarf cultivars that carry these different defective alleles, we detected 24 GC events, indicating a conversion rate of ~3.3 × 10?4 per marker per generation in a single meiotic cycle in rice. Furthermore, our data show that indels and single‐nucleotide polymorphisms (SNPs) do not differ significantly in GC rates, at least at the SD1 locus. Our results provide strong evidence that GC by itself can regain an ancestral phenotype that was lost through mutation. This GC detection approach is likely to be broadly applicable to natural or artificial alleles of other phenotype‐related functional genes, which are abundant in other plant genomes.  相似文献   

14.
Near-isogenic wheat (Triticum aestivum L.) lines differing in height-reducing (Rht) alleles were used to investigate the effects of temperature on endogenous gibberellin (GA) levels and seedling growth response to applied GA3. Sheath and lamina lengths of the first leaf were measured in GA treated and control seedlings, grown at 11, 18, and 25°C, of six Rht genotypes in each of two varietal backgrounds, cv Maris Huntsman and cv April Bearded. Endogenous GA1 levels in the leaf extension zone of untreated seedlings were determined by gas chromatography-mass spectrometry with a deuterated internal standard in the six Maris Huntsman Rht lines grown at 10 and 25°C. Higher temperature increased leaf length considerably in the tall genotype, less so in the Rht1 and Rht2 genotypes, and had no consistent effect on the Rht1+2, Rht3 and Rht2+3 genotypes. In all genotypes, endogenous GA1 was higher at 25°C than at 10°C. At 10°C the endogenous GA1 was at a similar level in all the genotypes (except Rht2+3). At 25°C it increased 1.6-fold in the tall genotype, 3-fold in Rht1 and Rht2, 6-fold in Rht3, and 9-fold in Rht1+2. Likewise, the genotypic differences in leaf length were very conspicuous at 25°C, but were only slight and often unsignificant at 11°C. The response of leaf length to applied GA3 in the Rht1, Rht2, and Rht1+2 genotypes increased significantly with lowering of temperature. These results suggest the possibility that the temperature effect on leaf elongation is mediated through its effect on the level of endogenous GA1 and that leaf elongation response to endogenous or applied GAs is restricted by the upper limits set by the different Rht alleles.  相似文献   

15.
Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F2‐derived, F6:7 RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow‐sense heritabilities were high for coleoptile and shoot length (h2 = 0.68–0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht‐B1b (?8.2%) and Rht‐D1b (?10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht‐B1 and Rht‐D1 loci. A large coleoptile length effect allele (= 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (rg = 0.85–0.90) support the co‐location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.  相似文献   

16.
Wu J  Kong X  Wan J  Liu X  Zhang X  Guo X  Zhou R  Zhao G  Jing R  Fu X  Jia J 《Plant physiology》2011,157(4):2120-2130
Dominance, semidominance, and recessiveness are important modes of Mendelian inheritance. The phytohormone gibberellin (GA) regulates many plant growth and developmental processes. The previously cloned semidominant GA-insensitive (GAI) genes Reduced height1 (Rht1) and Rht2 in wheat (Triticum aestivum) were the basis of the Green Revolution. However, no completely dominant GAI gene has been cloned. Here, we report the molecular characterization of Rht-B1c, a dominant GAI allele in wheat that confers more extreme characteristics than its incompletely dominant alleles. Rht-B1c is caused by a terminal repeat retrotransposons in miniature insertion in the DELLA domain. Yeast two-hybrid assays showed that Rht-B1c protein fails to interact with GA-INSENSITIVE DWARF1 (GID1), thereby blocking GA responses and resulting in extreme dwarfism and pleiotropic effects. By contrast, Rht-B1b protein only reduces interaction with GID1. Furthermore, we analyzed its functions using near-isogenic lines and examined its molecular mechanisms in transgenic rice. These results indicated that the affinity between GID1 and DELLA proteins is key to regulation of the stability of DELLA proteins, and differential interactions determine dominant and semidominant gene responses to GA.  相似文献   

17.
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12.  相似文献   

18.
Gibberellins (GAs) are important phytohormones in plants. GAs promote plant growth by inducing the degradation of DELLA proteins, which serve as GA signal repressors. The semi-dwarfing genes Rht-B1b and Rht-D1b, derived from the Japanese variety Norin 10, are gain-of-function mutant alleles of the reduced height-1 genes (Rht-B1 and Rht-D1) encoding wheat DELLA proteins. Wheat varieties carrying these Rht alleles are shorter and insensitive to the GA response. At the Rht-B1 loci, an alternative GA-insensitive dwarfing gene, Rht-B1e, was found in the Russian mutant of Bezostaya1, or Krasznodari 1, by breeders, but its molecular mechanism for causing dwarfism remains unknown. In this study, the Rht-B1e allele was isolated using homology-based cloning. Sequence comparison between Rht-B1e and the wild-type Rht-B1a revealed an A-to-T substitution at nucleotide position 181 in Rht-B1e, which introduced a stop codon into the DELLA domain. Alignment of deduced amino acid sequences of Rht-B1e and Rht-B1b showed that the stop codon position in Rht-B1e was earlier than that of Rht-B1b by three amino acid residues, and it was also followed closely by several methionines, which may permit translational re-initiation, as seen in Rht-B1b. Yeast two-hybrid analysis revealed that the predicted Rht-B1e proteins did not interact with the GA receptor GID1 in the presence of GA, suggesting that the stop codon mutation in the DELLA domain is the molecular cause of GA insensitivity and dwarfism conferred by Rht-B1e in wheat. Meanwhile, we developed an allele-specific PCR marker for Rht-B1e, which may facilitate the use of the Rht-B1e dwarfing gene in wheat breeding programs.  相似文献   

19.
20.
The pleiotropic effects of three genetically related dwarfinggenes were investigated in near-isogenic lines of wheat. TheNORIN 10 semi-dwarfing alleles, Rht 1 and Rht 2, and the TomThumb allele, Rht 3, were assessed for effects on some vegetativemorphological and physiological characters. The Rht allelesaffected leaf size with a resultant decrease in leaf area ofthe whole plant. Rht 3, which had the most marked effects, reducedleaf area in young plants by as much as 30 per cent. Althoughflag leaf dimensions and stomatal distributions of the flagleaf were altered, the gene had no effect on its area, stomatalconductance or net CO2 exchange rate. Comparisons of Rht andtall plants revealed no differences in the abscisic acid (ABA)levels of either turgid or partially dehydrated leaves. Triticum aestivum L., wheat, dwarfing genes, leaf structure, abscisic acid, stomatal conductance, CO2, exchange, relative growth rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号