首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus‐end directed kinesin and minus‐end directed dynein motors. Microtubules are decorated by microtubule‐associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single‐molecule assays indicate that kinesin‐1 is more strongly inhibited than kinesin‐2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin‐1, kinesin‐2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus‐end in a dose‐dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin‐1, kinesin‐2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor‐specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus‐ and minus‐end directed transport.   相似文献   

2.
The neck-linker is a structurally conserved region among most members of the kinesin superfamily of molecular motor proteins that is critical for kinesin’s processive transport of intracellular cargo along the microtubule surface. Variation in the neck-linker length has been shown to directly modulate processivity in different kinesin families; for example, kinesin-1, with a shorter neck-linker, is more processive than kinesin-2. Although small differences in processivity are likely obscured in vivo by the coupling of most cargo to multiple motors, longer and more flexible neck-linkers may allow different kinesins to navigate more efficiently around the many obstacles, including microtubule-associated proteins (MAPs), that are found on the microtubule surface within cells. We hypothesize that, due to its longer neck-linker, kinesin-2 can more easily navigate obstacles (e.g., MAPs) on the microtubule surface than kinesin-1. We used total internal reflection fluorescence microscopy to observe single-molecule motility from different kinesin-1 and kinesin-2 neck-linker chimeras stepping along microtubules in the absence or presence of two Tau isoforms, 3RS-Tau and 4RL-Tau, both of which are MAPs that are known to differentially affect kinesin-1 motility. Our results demonstrate that unlike kinesin-1, kinesin-2 is insensitive to the presence of either Tau isoform, and appears to have the ability to switch protofilaments while stepping along the microtubule when challenged by an obstacle, such as Tau. Thus, although kinesin-1 may be more processive, the longer neck-linker length of kinesin-2 allows it to be better optimized to navigate the complex microtubule landscape. These results provide new insight, to our knowledge, into how kinesin-1 and kinesin-2 may work together for the efficient delivery of cargo in cells.  相似文献   

3.
Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the surface of microtubules). To determine the direction of the next step of a kinesin molecule, this model considers the extension in the neck linkers of kinesin and the dynamic behavior of the coiled-coil structure of the kinesin neck. Also, the mechanical interference between kinesins and obstacles anchored on the microtubules is characterized. The model predicts that both the kinesin velocity and run length (i.e., the walking distance before detaching from the microtubule) are reduced by static obstacles. The run length is decreased more significantly by static obstacles than the velocity. Moreover, our model is able to predict the motion of kinesin when other (several) motors also move along the same microtubule. Furthermore, it suggests that the effect of mechanical interaction/interference between motors is much weaker than the effect of static obstacles. Our newly developed model can be used to address unanswered questions regarding degraded transport caused by the presence of excessive tau proteins on microtubules.  相似文献   

4.
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long‐distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio‐temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub‐domain‐specific microtubule (MT) tracks, sign‐posted by different tubulin isoforms, tubulin post‐translational modifications, tubulin GTPase activity and MT‐associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that – especially for axonal cargo – alterations to the MT track can influence transport, although in vivo, it is likely that multiple track‐based effects act synergistically to ensure accurate cargo distribution.  相似文献   

5.
The ability of Tau to act as a potent inhibitor of kinesin's processive run length in vitro suggests that it may actively participate in the regulation of axonal transport in vivo. However, it remains unclear how kinesin-based transport could then proceed effectively in neurons, where Tau is expressed at high levels. One potential explanation is that Tau, a conformationally dynamic protein, has multiple modes of interaction with the microtubule, not all of which inhibit kinesin's processive run length. Previous studies support the hypothesis that Tau has at least two modes of interaction with microtubules, but the mechanisms by which Tau adopts these different conformations and their functional consequences have not been investigated previously. In the present study, we have used single molecule imaging techniques to demonstrate that Tau inhibits kinesin's processive run length in an isoform-dependent manner on GDP-microtubules stabilized with either paclitaxel or glycerol/DMSO but not guanosine-5'-((α,β)-methyleno)triphosphate (GMPCPP)-stabilized microtubules. Furthermore, the order of Tau addition to microtubules before or after polymerization has no effect on the ability of Tau to modulate kinesin motility regardless of the stabilizing agent used. Finally, the processive run length of kinesin is reduced on GMPCPP-microtubules relative to GDP-microtubules, and kinesin's velocity is enhanced in the presence of 4-repeat long Tau but not the 3-repeat short isoform. These results shed new light on the potential role of Tau in the regulation of axonal transport, which is more complex than previously recognized.  相似文献   

6.
MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons   总被引:8,自引:0,他引:8  
Microtubule-dependent transport of vesicles and organelles appears saltatory because particles switch between periods of rest, random Brownian motion, and active transport. The transport can be regulated through motor proteins, cargo adaptors, or microtubule tracks. We report here a mechanism whereby microtubule associated proteins (MAPs) represent obstacles to motors which can be regulated by microtubule affinity regulating kinase (MARK)/Par-1, a family of kinases that is known for its involvement in establishing cell polarity and in phosphorylating tau protein during Alzheimer neurodegeneration. Expression of MARK causes the phosphorylation of MAPs at their KXGS motifs, thereby detaching MAPs from the microtubules and thus facilitating the transport of particles. This occurs without impairing the intrinsic activity of motors because the velocity during active movement remains unchanged. In primary retinal ganglion cells, transfection with tau leads to the inhibition of axonal transport of mitochondria, APP vesicles, and other cell components which leads to starvation of axons and vulnerability against stress. This transport inhibition can be rescued by phosphorylating tau with MARK.  相似文献   

7.
Neurons rely on microtubule (MT) motor proteins such as kinesin‐1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK‐3) has been proposed to be a central player in AD and to regulate axonal transport by the MT motor protein kinesin‐1. Using genetic, biochemical and biophysical approaches in Drosophila melanogaster, we find that endogenous GSK‐3 is a required negative regulator of both kinesin‐1‐mediated and dynein‐mediated axonal transport of the amyloid precursor protein (APP), a key contributor to AD pathology. GSK‐3 also regulates transport of an unrelated cargo, embryonic lipid droplets. By measuring the forces motors generate in vivo, we find that GSK‐3 regulates transport by altering the activity of kinesin‐1 motors but not their binding to the cargo. These findings reveal a new relationship between GSK‐3 and APP, and demonstrate that endogenous GSK‐3 is an essential in vivo regulator of bidirectional APP transport in axons and lipid droplets in embryos. Furthermore, they point to a new regulatory mechanism in which GSK‐3 controls the number of active motors that are moving a cargo .  相似文献   

8.
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule‐binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin‐3 (KIF1) and kinesin‐4 (KIF21) subfamily that can also target dendrites. We found that microtubule‐binding protein doublecortin‐like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1‐dependent dense‐core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule‐binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.  相似文献   

9.
Molecular motors translocate along cytoskeletal filaments, as in the case of kinesin motors on microtubules. Although conventional kinesin-1 tracks a single microtubule protofilament, other kinesins, akin to dyneins, switch protofilaments. However, the molecular trajectory—whether protofilament switching occurs in a directed or stochastic manner—is unclear. Here, we used high-resolution optical tweezers to track the path of single budding yeast kinesin-8, Kip3, motor proteins. Under applied sideward loads, we found that individual motors stepped sideward in both directions, with and against loads, with a broad distribution in measured step sizes. Interestingly, the force response depended on the direction. Based on a statistical analysis and simulations accounting for the geometry, we propose a diffusive sideward stepping motion of Kip3 on the microtubule lattice, asymmetrically biased by force. This finding is consistent with previous multimotor gliding assays and sheds light on the molecular switching mechanism. For kinesin-8, the diffusive switching mechanism may enable the motor to bypass obstacles and reach the microtubule end for length regulation. For other motors, such a mechanism may have implications for torque generation around the filament axis.  相似文献   

10.
The assembly of microtubule‐based cytoskeleton propels the cilia and flagella growth. Previous studies have indicated that the kinesin‐2 family motors transport tubulin into the cilia through intraflagellar transport. Here, we report a direct interaction between the C‐terminal tail fragments of heterotrimeric kinesin‐2 and α‐tubulin1 isoforms in vitro. Blot overlay screen, affinity purification from tissue extracts, cosedimentation with subtilisin‐treated microtubule and LC‐ESI‐MS/MS characterization of the tail‐fragment‐associated tubulin identified an association between the tail domains and α‐tubulin1A/D isotype. The interaction was confirmed by Forster's resonance energy transfer assay in tissue‐cultured cells. The overexpression of the recombinant tails in NIH3T3 cells affected the primary cilia growth, which was rescued by coexpression of a α‐tubulin1 transgene. Furthermore, fluorescent recovery after photobleach analysis in the olfactory cilia of Drosophila indicated that tubulin is transported in a non‐particulate form requiring kinesin‐2. These results provide additional new insight into the mechanisms underlying selective tubulin isoform enrichment in the cilia.   相似文献   

11.
Motor proteins and microtubule-associated proteins (MAPs) play important roles in cellular transport, regulation of shape and polarity of cells. While motor proteins generate motility, MAPs are thought to stabilize the microtubule tracks. However, the proteins also interfere with each other, such that MAPs are able to inhibit transport of vesicles and organelles in cells. In order to investigate the mechanism of MAP-motor interference in molecular detail, we have studied single kinesin molecules by total internal reflection fluorescence microscopy in the presence of different neuronal MAPs (tau, MAP2c). The parameters observed included run-length (a measure of processivity), velocity and frequency of attachment. The main effect of MAPs was to reduce the attachment frequency of motors. This effect was dependent on the concentration, the affinity to microtubules and the domain composition of MAPs. In contrast, once attached, the motors did not show a change in speed, nor in their run-length. The results suggest that MAPs can regulate motor activity on the level of initial attachment, but not during motion.  相似文献   

12.
Z Wang  S Khan    M P Sheetz 《Biophysical journal》1995,69(5):2011-2023
Cytoplasmic dynein is a major microtubule motor for minus-end directed movements including retrograde axonal transport. To better understand the mechanism by which cytoplasmic dynein converts ATP energy into motility, we have analyzed the nanometer-level displacements of latex beads coated with low numbers of cytoplasmic dynein molecules. Cytoplasmic dynein-coated beads exhibited greater lateral movements among microtubule protofilaments (ave. 5.1 times/microns of displacement) compared with kinesin (ave. 0.9 times/micron). In addition, dynein moved rearward up to 100 nm over several hundred milliseconds, often in correlation with off-axis movements from one protofilament to another. We suggest that single molecules of cytoplasmic dynein move the beads because 1) there is a linear dependence of bead motility on dynein/bead ratio, 2) the binding of beads to microtubules studied by laser tweezers is best fit by a first-order Poisson, and 3) the run length histogram of dynein beads follows a first-order decay. At the cellular level, the greater disorder of cytoplasmic dynein movements may facilitate transport by decreasing the duration of collisions between kinesin and cytoplasmic dynein-powered vesicles.  相似文献   

13.
In Alzheimer disease (AD) and frontotemporal dementia the microtubule-associated protein Tau becomes progressively hyperphosphorylated, eventually forming aggregates. However, how Tau dysfunction is associated with functional impairment is only partly understood, especially at early stages when Tau is mislocalized but has not yet formed aggregates. Impaired axonal transport has been proposed as a potential pathomechanism, based on cellular Tau models and Tau transgenic mice. We recently reported K369I mutant Tau transgenic K3 mice with axonal transport defects that suggested a cargo-selective impairment of kinesin-driven anterograde transport by Tau. Here, we show that kinesin motor complex formation is disturbed in the K3 mice. We show that under pathological conditions hyperphosphorylated Tau interacts with c-Jun N-terminal kinase- interacting protein 1 (JIP1), which is associated with the kinesin motor protein complex. As a result, transport of JIP1 into the axon is impaired, causing JIP1 to accumulate in the cell body. Because we found trapping of JIP1 and a pathological Tau/JIP1 interaction also in AD brain, this may have pathomechanistic implications in diseases with a Tau pathology. This is supported by JIP1 sequestration in the cell body of Tau-transfected primary neuronal cultures. The pathological Tau/JIP1 interaction requires phosphorylation of Tau, and Tau competes with the physiological binding of JIP1 to kinesin light chain. Because JIP1 is involved in regulating cargo binding to kinesin motors, our findings may, at least in part, explain how hyperphosphorylated Tau mediates impaired axonal transport in AD and frontotemporal dementia.The microtubule-associated protein Tau is predominantly found in the axonal compartment of neurons, where it binds to microtubules (1). In human brain, six isoforms of Tau are expressed, due to alternative splicing of exons 2, 3 and 10 (2). Tau consists of an amino-terminal projection domain followed by 3 or 4 microtubule binding repeats (3R or 4R), due to splicing of exon 10, and a carboxyl-terminal tail region. In the AD3 and FTD brain, Tau forms filamentous inclusions (3). They are found in nerve cell bodies and apical dendrites as neurofibrillary tangles (NFTs), in distal dendrites as neuropil threads, and in the abnormal neurites that are associated with some amyloid plaques (neuritic plaques) (3). Hyperphosphorylation of Tau is thought to be an initiating step (4), as it detaches Tau from microtubules and makes it prone to form aggregates (1, 5). Whereas in AD no mutations have been identified in the MAPT gene encoding Tau, so far 42 intronic and exonic mutations have been found in familial forms of FTD (6). Their identification assisted in the generation of transgenic mouse models that reproduce NFT formation and memory impairment (7).The models were also instrumental in testing hypotheses that had been brought forward to link Tau pathology to functional impairment (810). In particular, defects in axonal transport have been implicated in neurodegenerative disorders (11, 12). Tau binding to microtubules affects axonal transport (13), and in cell culture overexpression of Tau was shown to lead to impaired transport of mitochondria and vesicles (14, 15). Axonal transport defects have also been reproduced in wild-type Tau transgenic mice (16) and in K369I mutant Tau K3 mice (17), whereas Tau expression failed to inhibit axonal transport in other systems (18, 19). This apparent discrepancy may depend on the type of cargos analyzed and, specifically, the experimental paradigm, e.g. using phosphorylated (16, 17, 20) versus non-phosphorylated Tau (18).To dissect Tau-mediated axonal transport defects at a molecular level, we used K3 mice that overexpress human Tau carrying the pathogenic FTD K369I mutation (17). We observed a pronounced hyperphosphorylation of transgenic Tau in many brain areas. Clinically, the mice present with an early onset motor phenotype that is, at least in part, caused by impairment of axonal transport in neurons of the substantia nigra. Interestingly, only selected aspects of anterograde axonal transport were impaired, in particular those of kinesin-I motor complex-driven vesicles and mitochondria. Our data suggest a selective impairment of axonal transport rather than a generalized, non-selective blockage of microtubules that has been established in cell culture systems, which fail to phosphorylate Tau at the high levels that are found in vivo even under physiological conditions. More importantly, in AD and FTD Tau is even more phosphorylated, i.e. hyperphosphorylated at physiological sites and de novo at pathological sites, preventing it from binding to microtubules (1).Based on our findings of an impaired kinesin-I-driven axonal transport in the K3 mice, we speculated that hyperphosphorylated Tau may impair anterograde transport by interfering directly with components of the kinesin-I motor complex rather than disrupting the binding of the kinesin heavy chain (see below) to microtubules. Axonal transport along microtubules is mediated by members of the kinesin superfamily (KIF) of motor proteins (2123). The KIFs typically consist of an ATPase domain that interacts with microtubules and drives movement and a domain that links to cargos, either directly or indirectly, as in the case of KIF5, by assembling with the kinesin light chain (KLC) to form the kinesin-I (KIF5/KLC) motor complex (24). In addition, increasing evidence suggests that scaffolding proteins mediate and regulate the binding of cargos to KIFs (21, 2527). These include the scaffold protein JNK-interacting protein (JIP) that is involved in the linkage of cargos to the kinesin-I motor complex via KLC (25, 2833).Here, by using the K3 mouse model, we identified a novel interaction of Tau and JIP in neurons that causes a trapping of JNK interacting protein 1 (JIP1) in the cell body of K3 mice, cell culture systems, and human AD brain. We found that the pathological interaction of hyperphosphorylated Tau and JIP1 competes with the physiological binding of JIP1 to KLC.  相似文献   

14.
Obstacles on the surface of microtubules can lead to defective cargo transport, proposed to play a role in neurological diseases such as Alzheimer’s. However, little is known about how motor proteins, which follow individual microtubule protofilaments (such as kinesin-1), deal with obstacles on the molecular level. Here, we used rigor-binding mutants of kinesin-1 as roadblocks to permanently obstruct individual microtubule binding sites and studied the movement of individual kinesin-1 motors by single-molecule fluorescence and dark-field scattering microscopy in vitro. In the presence of roadblocks, kinesin-1 often stopped for ∼0.4 s before either detaching or continuing to move, whereby the latter circumvention events occurred in >30% after a stopping event. Consequently, and in agreement with numerical simulations, the mean velocity, mean run length, and mean dwell time of the kinesin-1 motors decreased upon increasing the roadblock density. Tracking individual kinesin-1 motors labeled by 40 nm gold particles with 6 nm spatial and 1 ms temporal precision revealed that ∼70% of the circumvention events were associated with significant transverse shifts perpendicular to the axis of the microtubule. These side-shifts, which occurred with equal likelihood to the left and right, were accompanied by a range of longitudinal shifts suggesting that roadblock circumvention involves the unbinding and rebinding of the motors. Thus, processive motors, which commonly follow individual protofilaments in the absence of obstacles, appear to possess intrinsic circumvention mechanisms. These mechanisms were potentially optimized by evolution for the motor’s specific intracellular tasks and environments.  相似文献   

15.
Doublecortin (Dcx) defines a growing family of microtubule (MT)-associated proteins (MAPs) involved in neuronal migration and process outgrowth. We show that Dcx is essential for the function of Kif1a, a kinesin-3 motor protein that traffics synaptic vesicles. Neurons lacking Dcx and/or its structurally conserved paralogue, doublecortin-like kinase 1 (Dclk1), show impaired Kif1a-mediated transport of Vamp2, a cargo of Kif1a, with decreased run length. Human disease-associated mutations in Dcx's linker sequence (e.g., W146C, K174E) alter Kif1a/Vamp2 transport by disrupting Dcx/Kif1a interactions without affecting Dcx MT binding. Dcx specifically enhances binding of the ADP-bound Kif1a motor domain to MTs. Cryo-electron microscopy and subnanometer-resolution image reconstruction reveal the kinesin-dependent conformational variability of MT-bound Dcx and suggest a model for MAP-motor crosstalk on MTs. Alteration of kinesin run length by?MAPs represents a previously undiscovered mode of control of kinesin transport and provides?a mechanism for regulation of MT-based transport by local signals.  相似文献   

16.
《The Journal of cell biology》1994,127(6):1965-1971
Microtubules are constructed from alpha- and beta-tubulin heterodimers that are arranged into protofilaments. Most commonly there are 13 or 14 protofilaments. A series of structural investigations using both electron microscopy and x-ray diffraction have indicated that there are two potential lattices (A and B) in which the tubulin subunits can be arranged. Electron microscopy has shown that kinesin heads, which bind only to beta-tubulin, follow a helical path with a 12-nm pitch in which subunits repeat every 8-nm axially, implying a primarily B-type lattice. However, these helical symmetry parameters are not consistent with a closed lattice and imply that there must be a discontinuity or "seam" along the microtubule. We have used quick-freeze deep-etch electron microscopy to obtain the first direct evidence for the presence of this seam in microtubules formed either in vivo or in vitro. In addition to a conventional single seam, we have also rarely found microtubules in which there is more than one seam. Overall our data indicates that microtubules have a predominantly B lattice, but that A lattice bonds between tubulin subunits are found at the seam. The cytoplasmic microtubules in mouse nerve cells also have predominantly B lattice structure and A lattice bonds at the seam. These observations have important implications for the interaction of microtubules with MAPs and with motor proteins, and for example, suggest that kinesin motors may follow a single protofilament track.  相似文献   

17.
Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.  相似文献   

18.
Polarized kinesin‐driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule‐binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin‐2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.  相似文献   

19.
Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号