首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders. These diseases are defined by primary lysosomal defects and a few secondary defects such as mitochondrial dysfunction. Intriguingly, recent research indicates that the majority of these defects are also associated with aging, implying that sphingolipid-related diseases and aging may share common mechanisms. We propose that the lysosome is a pivotal hub for sphingolipid-mediated aging regulation. This review discusses the critical roles of sphingolipid metabolism in regulating various lysosomal functions, with an emphasis on how such regulation may contribute to aging and aging-related diseases.  相似文献   

3.
The lysosomal membrane was thought for a long time to primarily act as a physical barrier separating the luminal acidic milieu from the cytoplasmic environment. Meanwhile, it has been realized that unique lysosomal membranes play essential roles in a number of cellular events ranging from phagocytosis, autophagy, cell death, virus infection to membrane repair. This review provides an overview about the most interesting emerging functions of lysosomal membrane proteins and how they contribute to health and disease. Their importance is exemplified by their role in acidification, transport of metabolites and ions across the membrane, intracellular transport of hydrolases and the regulation of membrane fusion events. Studies in patient cells, non‐mammalian model organisms and knockout mice contributed to our understanding of how the different lysosomal membrane proteins affect cellular homeostasis, developmental processes as well as tissue functions. Because these proteins are central for the biogenesis of this compartment they are also considered as attractive targets to modulate the lysosomal machinery in cases where impaired lysosomal degradation leads to cellular pathologies. We are only beginning to understand the complex composition and function of these proteins which are tightly linked to processes occurring throughout the endocytic and biosynthetic pathways.   相似文献   

4.
Cell death in health and disease   总被引:1,自引:0,他引:1  
Cell death is clearly an important factor in development, homeostasis, pathology, and in aging, but medical efforts based on controlling cell death have not become major aspects of medicine. There are several reasons why hopes have been slow to be fulfilled, and they present indications for new directions in research. Most effort has focused on the machinery of cell death, or the proximate effectors of apoptosis and their closely-associated and interacting proteins. But cells have many options other than apoptosis. These include autophagy, necrosis, atrophy, and stepwise or other alternate means of self-disassembly. The response of a cell to a noxious or otherwise intimidating signal will depend heavily on the history, lineage, and current status of the cell. Many metabolic and other processes adjust the sensitivity of cells to signals, and viruses aggressively attempt to regulate the death of their host cells. Another complicating factor is that many death-associated proteins may have functions totally unrelated to their role in cell death, generating the possibility of undesirable side effects if one interferes with them. In the future, the challenge will be more to understand the challenge to the cell from a more global standpoint, including many more aspects of metabolism, and work toward alleviating or provoking the challenge in a targeted fashion.  相似文献   

5.
Cell death can occur by two basically different processes. The original term, necrosis, is now reserved for the generally destructive series of events which include the release of lysosomal enzymes and loss of cell membrane integrity. In contrast, mild treatment with cell damaging agents, or withdrawal of growth factors, may result in a characteristic form of degradation of cellular DNA which is associated with cell death that has morphology known as apoptosis. In this study human leukemia cells were exposed to agents or conditions previously reported to cause necrosis or apoptosis, monitored by detection of DNA “ladders,” and the integrity of cellular DNA was determined on Southern blots. Nuclear DNA was distinguished from mitochondrial DNA by use of probes specific for nuclear genes or for mitochondrial DNA. When HL60, K562, MOLT4, or U937 cells were exposed to conditions which resulted in necrosis, mitochondrial DNA was damaged at approximately the same rate as nuclear DNA, but in apoptosis mtDNA was not degraded. Thus, the ratio of the relative (to untreated cells) abundance of mitochondrial DNA measured by a probe for 16S mitochondrial ribosomal RNA on Southern blots, to the relative abundance of DNA of any nuclear gene, was 1 or less in necrosis, but rose to values greater than 2 in apoptosis. It is concluded that the comparison of the degree of fragmentation of mitochondrial and nuclear DNA provides a quantitative way of distinguishing necrosis from apoptosis.  相似文献   

6.
Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3β in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3β and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE‐deficient mice, demonstrating that CysC deficiency (CysC?/?) in these mice results in reduction of Atg5 and LC3β levels and induction of apoptosis. Third, macrophages isolated from CysC?/? mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7‐oxysterol‐mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol‐mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE‐deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.  相似文献   

7.
Rab and ADP‐ribosylation factor (Arf) family proteins are master regulators of membrane trafficking and are involved in all steps of vesicular transport. These families of small guanine‐nucleotide‐binding (G) proteins are well suited to regulate membrane trafficking processes since their nucleotide state determines their conformation and the capacity to bind to a multitude of effectors, which mediate their functions. In recent years, several inherited diseases have been associated with mutations in genes encoding proteins belonging to these two families or in proteins that regulate their GTP‐binding cycle. The genetic diseases that are caused by defects in Rabs, Arfs or their regulatory proteins are heterogeneous and display diverse symptoms. However, these diseases mainly affect two types of subcellular compartments, namely lysosome‐related organelles and cilia. Also, several of these diseases affect the nervous system. Thus, the study of these diseases represents an opportunity to understand their etiology and the molecular mechanisms involved, as well as to develop novel therapeutic strategies .  相似文献   

8.
The cell biology of Hermansky-Pudlak syndrome: recent advances   总被引:3,自引:0,他引:3  
Hermansky-Pudlak syndrome (HPS) defines a group of at least seven autosomal recessive disorders characterized by albinism and prolonged bleeding. These manifestations arise from defects in the biogenesis of lysosome-related organelles, including melanosomes and platelet dense granules. Most genes associated with HPS in humans and rodent models of the disease encode components of multisubunit protein complexes that are expressed ubiquitously and play roles in intracellular protein trafficking and/or organelle distribution. A small GTPase of the Rab family, Rab38, is also implicated in the pathogenesis of the disease. This article reviews recent progress toward elucidating the cellular functions of these proteins.  相似文献   

9.
The discovery that expansion of a hexanucleotide repeat within a noncoding region of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia raised questions about C9orf72 protein function and potential disease relevance. The major predicted structural feature of the C9orf72 protein is a DENN (differentially expressed in normal and neoplastic cells) domain. As DENN domains are best characterized for regulation of specific Rab GTPases, it has been proposed that C9orf72 may also act through regulation of a GTPase target. Recent genetic and cell biological studies furthermore indicate that the C9orf72 protein functions at lysosomes as part of a larger complex that also contains the Smith‐Magenis chromosome region 8 (SMCR8) and WD repeat‐containing protein 41 (WDR41) proteins. An important role for C9orf72 at lysosomes is supported by defects in lysosome morphology and mTOR complex 1 (mTORC1) signaling arising from C9orf72 KO in diverse model systems. Collectively, these new findings define a C9orf72‐containing protein complex and a lysosomal site of action as central to C9orf72 function and provide a foundation for the elucidation of direct physiological targets for C9orf72. Further elucidation of mechanisms whereby C9orf72 regulates lysosome function will help to determine how the reductions in C9orf72 expression levels that accompany hexanucleotide repeat expansions contribute to disease pathology.   相似文献   

10.
Autophagy is a survival mechanism necessary for eukaryotic cells to overcome nutritionally challenged environments. When autophagy is triggered, cells degrade nonselectively engulfed cytosolic proteins and free ribosomes that are evenly distributed throughout the cytoplasm. The resulting pool of free amino acids is used to sustain processes crucial for survival. Here we characterize an autophagic degradation of the endoplasmic reticulum (ER) under starvation conditions in addition to cytosolic protein degradation. Golgi membrane protein was not engulfed by the autophagosome under the same conditions, indicating that the uptake of ER by autophagosome was the specific event. Although the ER exists in a network structure that is mutually connected and resides predominantly around the nucleus and beneath the plasma membrane, most of autophagosome engulfed ER. The extent of the ER uptake by autophagy was nearly identical to that of the soluble cytosolic proteins. This phenomenon was explained by the appearance of fragmented ER membrane structures in almost all autophagosomes. Furthermore, ER dynamism is required for this process: ER uptake by autophagosomes occurs in an actin-dependent manner.  相似文献   

11.
Patrice Codogno 《Autophagy》2016,12(6):1063-1068
Patrice Codogno (Fig. 1), one of the associate editors of Autophagy since it was established, is well known in the autophagy field, and has played a particularly important role in France, serving as the first president of Club Francophone de l'AuTophaGie (CFATG). Patrice's research career spans from the predominantly biochemical analyses that were commonly used in the 1980s to the molecular studies that are the primary focus of many labs currently studying autophagy today. Anyone who has met Patrice knows that he is modest, which means his contributions to autophagy and to promoting the careers of scientists globally, are underappreciated. In addition, there is a fun-loving side to Patrice that is often hidden to the casual observer, and it is time to share some of his personality and thoughts with the rest of the autophagy community.  相似文献   

12.
Yolk sac-derived embryonic erythroid cells differentiate synchronously in the peripheral blood of Syrian hamster. The stage of differentiation on day 10 of gestation is equivalent to polychromatophilic erythroblast stage and that on day 13 is equivalent to the reticulocyte stage in adult animals. The cytoplasm of embryonic erythroid cells became scant and devoid of most organelles on day 12 of gestation. In addition, there were very few non-erythroid cells in circulation before day 13. Thus the embryonic erythroid cells serve a pure and synchronous system to study the mechanisms of terminal differentiation. The number of mitochondria in the embryonic erythroid cells decreased to about 10% of the initial number during the period between day 10 and day 12 of gestation. In contrast, the frequency of autophagy of mitochondria increased 4.6-fold in the same period. The cytochrome c content of the cell decreased as the mitochondria became extinct. However, release of cytochrome c into the cytoplasm was not detectable through day 10-13 of gestation, suggesting that the mitochondria were digested within a closed compartment. Decomposed mitochondria and ferritin particles were detected in lysosomes by electron microscopy on and after day 12 of gestation, which also suggested digestion in a closed compartment. Mitochondrial ATP synthase subunit c, which is known to be a protease-refractory protein, was retained in the cells even after the disappearance of mitochondria, indicating that most of the mitochondria were not extruded from the cells. The digestion of mitochondria in autolysosomes may allow the cells to escape from rapid apoptotic cell death through concomitant removal of mitochondrial death-promoting factors such as cytochrome c.  相似文献   

13.
14.
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.  相似文献   

15.
16.
Breast cancer tissue contains a small population of cells that have the ability to self-renew; these cells are known as cancer stem-like cells (CSCs). We have recently shown that autophagy is essential for the tumorigenicity of these CSCs. Salinomycin (Sal), a K+/H+ ionophore, has recently been shown to be at least 100 times more effective than paclitaxel in reducing the proportion of breast CSCs. However, its mechanisms of action are still unclear. We show here that Sal blocked both autophagy flux and lysosomal proteolytic activity in both CSCs and non-CSCs derived from breast cancer cells. GFP-LC3 staining combined with fluorescent dextran uptake and LysoTracker-Red staining showed that autophagosome/lysosome fusion was not altered by Sal treatment. Acridine orange staining provided evidence that lysosomes display the characteristics of acidic compartments in Sal-treated cells. However, tandem mCherry-GFP-LC3 assay indicated that the degradation of mCherry-GFP-LC3 is blocked by Sal. Furthermore, the protein degradation activity of lysosomes was inhibited, as demonstrated by the rate of long-lived protein degradation, DQ-BSA assay and measurement of cathepsin activity. Our data indicated that Sal has a relatively greater suppressant effect on autophagic flux in the ALDH+ population in HMLER cells than in the ALDH population; moreover, this differential effect on autophagic flux correlated with an increase in apoptosis in the ALDH+ population. ATG7 depletion accelerated the proapoptotic capacity of Sal in the ALDH+ population. Our findings provide new insights into how the autophagy-lysosomal pathway contributes to the ability of Sal to target CSCs in vitro.  相似文献   

17.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

18.
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.  相似文献   

19.
20.
自噬是保守的细胞防御机制,又是程序性细胞死亡机制.在多种人类肿瘤中存在细胞自噬活性改变.自噬活性降低促进肿瘤的发生和进展.综述了近年来细胞自噬在肿瘤中的研究进展,从基因组不稳定性、炎-癌链转化和演进、致瘤微生 物感染和宿主免疫应答、细胞凋亡途径与自噬的交叉调节等角度探讨自噬抑制肿瘤的机理,以及细胞自噬在肿瘤治疗中的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号