首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mechanisms may affect the yield of the oxidative phosphorylation pathway in isolated mitochondria: (i) a decrease in the intrinsic coupling of the proton pumps (H+/2e- or H+/ATP), and (ii) an increase in the inner membrane conductance (proton or cation leak). Hence three kinds of modifications can occur and each of them have been characterized in isolated rat liver mitochondria (see preceding chapter by Rigoulet et al.). In intact isolated hepatocytes, these modifications are linked to specific patterns of bioenergetic parameters, i.e. respiratory flux, mitochondrial redox potential, DY, and phosphate potential.(1) The increase in H+/ATP stoichiometry of the mitochondrial ATP synthase, as induced by almitrine [20], leads to a decrease in mitochondrial and cytosolic ATP/ADP ratios without any change in the protonmotive force nor in the respiratory rate or redox potential. (2) In comparison to carbohydrate, octanoate metabolism by -oxidation increases the proportion of electrons supplied at the second coupling site of the respiratory chain. This mimics a redox slipping. Octanoate addition results in an increased respiratory rate and mitochondrial NADH/NAD ratio while protonmotive force and phosphate potential are almost unaffected. The respiratory rate increase is associated with a decrease in the overall apparent thermodynamic driving force (2'o - np) which confirms the redox-slipping-like effect. (3) An increase in proton conductance as induced by the protonophoric uncoupler 2,4-dinitrophenol (DNP) leads to a decrease, as expected, in the mitochondrial NADH/NAD and ATP/ADP ratios and in while respiratory rate is increased.Thus, each kind of modification (proton leak, respiratory chain redox slipping or increase in H+/ATP stoichiometry of ATPase) is related to a specific set of bioenergetic parameters in intact cells. Moreover, these patterns are in good agreement with the data found in isolated mitochondria.From this work, we conclude that quantitative analysis of four bioenergetic parameters (respiration rate, mitochondrial NADH/NAD ratio, protonmotive force and mitochondrial phosphate potential) gives adequate tools to investigate the mechanism by which some alterations may affect the yield of the oxidative phosphorylation pathway in intact cells.  相似文献   

2.
A full-length cDNA clone encoding a putative copper/zinc-superoxide dismutase (SOD) of sweet potato, Ipomoea batatas (L.) Lam. cv Tainong 57, was isolated from a cDNA library constructed in gt10 from tuber root mRNA. Nucleotide sequence analysis of this cDNA clone revealed that it comprises a complete open reading frame coding for 152 amino acid residues. The deduced amino acid sequence showed higher homology (78–86%) with the sequence of the cytosolic SOD than that of the chloroplast SOD from other plant species. The residues required for coordinating copper and zinc are conserved as they are among all reported Cu/Zn-SOD sequences. In addition, it lacks recognizable plastic or mitochondrial targeting sequences. These data suggest that the isolated sweet potato clone encodes a cytosolic Cu/Zn-SOD.  相似文献   

3.
The uncoupling-like effect of fatty acids [ Scholz , R., Schwabe , U., and Soboll , S. (1984) Eur. J. Biochem. 141, 223-230] was further substantiated in experiments with perfused rat livers by two ways: firstly the kinetics of changes in metabolic rates (oxygen consumption, ketogenesis, fatty acid oxidation) were analysed; secondly subcellular contents of adenine nucleotides and pH gradients across the mitochondrial membrane were determined following fractionation of freeze-fixed and dried tissues in non-aqueous solvents. The following results were obtained. The relaxation kinetics of the increase in oxygen consumption following fatty acid infusion revealed two components, a rapid one with a half-time around 10 s and a slow one with a half-time of more than 100 s. The rapid component was similar to the kinetics of fatty acid oxidation (ketogenesis and 14CO2 production from labelled fatty acids) whereas the half-time of the slow component was in the range of half-times observed with the increase in oxygen consumption following addition of carbonylcyanide p-trifluoromethoxyphenylhydrazone. In the presence of fatty acids, the cytosolic ATP concentrations and ATP/ADP ratios decreased, whereas the corresponding parameters for the mitochondrial space were either increased (oleate) or decreased (octanoate). The effects of oleate were dependent on the albumin concentrations in the perfusate. The normally large difference between cytosolic and mitochondrial ATP/ADP ratios became smaller. Similar observations were obtained with uncoupling agents. The pH gradient across the mitochondrial membrane as calculated from the subcellular distribution of 5,5 dimethyl[2-14C]oxazolidine-2,4-dione was inversed following the addition of both carbonylcyanide p-trifluoromethoxyphenylhydrazone and fatty acids, i.e. the mitochondrial matrix became more acidic than the cytosol. The pH gradient was not affected when oleate was added in the presence of high albumin concentrations. The data support the hypothesis that the increase in hepatic oxygen consumption due to octanoate or oleate is, in part, caused by a mechanism similar to uncoupling of oxidative phosphorylation. This mechanism seems not to be an artifact of isolated systems; it may be of physiological importance for processes in which reducing equivalents are removed independently of the ATP demand of the hepatocyte.  相似文献   

4.
Polyunsaturated fatty acid (PUFA) deficiency affects respiratory rate both in isolated mitochondria and in hepatocytes, an effect that is normally ascribed to major changes in membrane composition causing, in turn, protonophoriclike effects. In this study, we have compared the properties of hepatocytes isolated from PUFA-deficient rats with those from control animals treated with concentrations of the protonophoric uncoupler 2,4-dinitrophenol (DNP). Despite identical respiratory rate and in situ mitochondrial membrane potential (), mitochondrial and cytosolic ATP/ADP–Pi ratios were significantly higher in PUFA-deficient cells than in control cells treated with DNP. We show that PUFA-deficient cells display an increase of phosphorylation efficiency, a higher mitochondrial ATP/ADP–Pi ratio being maintained despite the lower . This is achieved by (1) decreasing mitochondrial Pi accumulation, (2) increasing ATP synthase activity, and (3) by increasing the flux control coefficient of adenine nucleotide translocation. As a consequence, oxidative phosphorylation efficiency was only slightly affected in PUFA-deficient animals as compared to protonophoric uncoupling (DNP). Thus, the energy waste induced by PUFA deficiency on the processes that generate the proton motive force (pmf) is compensated in vivo by powerful adaptive mechanisms that act on the processes that use the pmf to synthesize ATP.  相似文献   

5.
In valinomycin induced stimulation of mitochondrial energy dependent reversible swelling, supported by succinate oxidation, cytochrome c (cyto-c) and sulfite oxidase (Sox) [both present in the mitochondrial intermembrane space (MIS)] are released outside. This effect can be observed at a valinomycin concentration as low as 1 nM. The rate of cytosolic NADH/cyto-c electron transport pathway is also greatly stimulated. The test on the permeability of mitochondrial outer membrane to exogenous cyto-c rules out the possibility that the increased rate of exogenous NADH oxidation could be ascribed either to extensively damaged or broken mitochondria. Accumulation of potassium inside the mitochondria, mediated by the highly specific ionophore valinomycin, promotes an increase in the volume of matrix (evidenced by swelling) and the interaction points between the two mitochondrial membranes are expected to increase. The data reported and those previously published are consistent with the view that “respiratory contact sites” are involved in the transfer of reducing equivalents from cytosol to inside the mitochondria both in the absence and the presence of valinomycin. Magnesium ions prevent at least in part the valinomycin effects. Rather than to the dissipation of membrane potential, the pro-apoptotic property of valinomycin can be ascribed to both the release of cyto-c from mitochondria to cytosol and the increased rate of cytosolic NADH coupled with an increased availability of energy in the form of glycolytic ATP, useful for the correct execution of apoptotic program.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

7.
Lietz T  Rybka J  Bryła J 《Amino acids》1999,16(1):41-58
Summary In isolated rabbit renal cortical tubules, glucose synthesis from 1 mM alanine is negligible, while the amino acid is metabolized to glutamine and glutamate. The addition of 0.5 mM octanoate plus 2 mM glycerol induces incorporation of [U-14C]Alnine into glucose and decreases glutamine synthesis, whereas oleate and palmitate in the presence of glycerol are less potent than octanoate. Gluconeogenesis is also significantly accelerated when glycerol is substituted by lactate. In view of an increase in14CO2 fixation and elevation of both cytosolic and mitochondrial NADH/NAD+ ratios, the activation of glucose formation from alanine upon the addition of glycerol and octanoate is likely due to (i) stimulation of pyruvate carboxylation, (ii) increased availability of NADH for glyceraldehyde-3-phosphate dehydrogenase and (iii) elevation of mitochondrial redox state causing a diminished provision of ammonium for glutamine synthesis. The induction of gluconeogenesis in the presence of alanine, glycerol and octanoate is not related to cell volume changes. The results presented in this paper show the importance of free fatty acids and glycerol for regulation of renal gluconeogenesis from alanine. The possible physiological significance of the data is discussed.  相似文献   

8.
9.
Mitochondria isolated from spinach leaves (Spinacia oleracea L.) and potato tubers (Solanum tuberosum L.) were partly injured when subjected to freezing for 2 to 4 h at-25°C in salt solutions in the absence of cryoprotectants. Damage was manifested by the inactivation of respiratory properties and increase in the permeability of the mitochondrial membranes. Decrease in respiratory control indicated that the control mechanism of the electron transport chain was influenced by freezing. Oxidative phosphorylation was only slightly more affected than electron transport. The inactivation of the membrane systems was caused by an increase in the concentration of membrane-toxic solutes. This was confirmed by treatment of the organelles at 0°C in solutions of high salt concentrations. When sugar was present in the course of freezing, mitochondria were partly or completely protected. On a molar basis, sucrose was more effective in membrane protection than glucose. Under certain conditions amino acids, e.g., proline and hydroxyproline, also stabilized isolated mitochondria during freezing.Abbreviations BSA bovine albumin - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MOPS 2-N-morpholinopropane sulfonic acid - PVP polyvinyl pyrrolidone - RC respiratory control - Tris tris (hydroxymethyl) aminomethane  相似文献   

10.
Rabbit hearts were perfused with Krebs-Henseleit bicarbonate buffer supplemented with 15 mM glucose and 10 mU/ml of insulin +/- Pi. At the end of 60 min the hearts were freeze-clamped and the content of ATP, creatine phosphate, creatine, lactate, pyruvate, DHAP and 3-P glycerate were determined enzymatically in neutralized perchloric acid tissue extracts. The free cytosolic ADP and Pi and the cytosolic NAD+ redox and phosphorylation potentials were calculated from the measured metabolite concentrations. Pi free perfusion resulted in increased creatine, free cytosolic ADP and cytosolic phosphorylation potential, decreased calculated free Pi and no change in cardiac ATP and creatine phosphate content. The increase in the cytosolic phosphorylation potential was due to the lowering of cytosolic free Pi. The increase in ADP was due to the increase in creatine. The increase in creatine appeared to be due to an inhibition of creatine efflux from the heart during Pi free perfusion which was mediated by an enhanced Na+ electrochemical gradient.  相似文献   

11.
1. Rat-liver mitochondria showed a decrease in amino acid production after preparation in 0·25m-sucrose containing EDTA (1mm), but an increase in water content. When EDTA was replaced by Mn2+ (1mm) or succinate (1mm), both amino acid production and water content were lowered, whereas preparation in 0·9% potassium chloride caused an increase in both. 2. Amino acid production by rat-liver homogenates prepared in 0·9% potassium chloride or 0·25m-sucrose was similar (qamino acid 0·047 and 0·042 respectively aerobically). After freezing-and-thawing qamino acid values were approximately doubled, and approached that of a homogenate prepared in water. 3. All cations tested inhibited amino acid production by mitochondria, Hg2+ and Zn2+ being the most effective in tris–hydrochloric acid buffer. In phosphate buffer Mg2+ and Mn2+ had no effect. Of the anions tested only pyrophosphate and arsenate had any inhibitory effect at final concn. 1mm. 4. Iodosobenzoate (1mm) and p-chloromercuribenzenesulphonate (1mm) inhibited mitochondrial amino acid production by 70–80%, whereas soya-bean trypsin inhibitor, EDTA and di-isopropyl phosphorofluoridate inhibited by a maximum of 30%. Respiratory inhibitors had no effect. 5. Rat-liver homogenate and subcellular fractions each showed an individual pattern of inhibition when a series of inhibitors was tested. 6. Amino acid production by mitochondria was decreased by up to 50% in the presence of oxidizable substrate, apart from α-glycerophosphate and palmitate, which had no effect. CoA stimulated amino acid production in tris–hydrochloric acid but not in phosphate buffer, α-oxoglutarate abolishing the stimulation. 7. Cysteine and glutathione stimulated amino acid production by whole mitochondria by 30%, but only reduced glutathione stimulated production in broken mitochondria. 8. Adrenocorticotrophic hormone and growth hormone stimulated mitochondrial amino acid production by 21–24%, whereas insulin inhibited production by 25%. 9. Coupled oxidative phosphorylation increased amino acid production by up to 154% at 25° and 40°. The increase was abolished by 2,4-dinitrophenol. 10. Amino acid incorporation in mitochondria was accompanied by an increase in amino acid production, both being decreased by chloramphenicol. 11. Mitochondrial production of ninhydrin-positive material was increased in the presence of albumin. The biggest increase was noted for the soluble fraction of broken mitochondria. No increase was found in the presence of 14C-labelled algal protein or denatured mitochondrial protein.  相似文献   

12.
13.
The kinetics of the hepatic mitochondrial citrate transporter were studied using 1,2,3-benzene tricarboxylate and the inhibitor-stop technique at 8 degrees C. The apparent Km for this transporter was 250 muM and the maximum velocity was 2 nmol of citrate transported per minute per milligram of mitochondrial protein. This apparent Km was increased when hepatic mitochondria were preincubated with both L-palmitoylcarnitine and CoA-SH but not with either alone. This rise in apparent Km was accompanied by a rise in the acid insoluble CoA-SH content. Removal of mitochondrial acid insoluble CoA by "defatted albumin" resulted in a parallel decrease in the apparent Km. The apparent Km for the citrate transporter was increased after coupled beta-oxidation of L-palmitoylcarnitine or octanoate without a detectable increase in acid insoluble CoA. Inhibition of beta-oxidation of L-palmitoylcarnitine by the D-derivative prevented the rise in the apparent Km. Preincubation with ATP resulted in an increase in this apparent Km. When L-palmitoylcarnitine oxidation occurred without ATP accumulation (hexokinase, glucose, ADP, and inorganic phosphate) the apparent Km for the citrate transporter increased two- to threefold. Therefore, the apparent Km for the citrate transporter varied directly with the acid insoluble CoA content. In addition, this Km was increased as a result of beta-oxidation of fatty acids but the mechanism was not solely attributable to a rise in acid insoluble CoA or ATP. The physiological implications of these findings are discussed.  相似文献   

14.
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.  相似文献   

15.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

16.
Summary Cysteme synthase, the key enzyme for fixation of inorganic sulfide, catalyses the formation of cysteine from O-acetylserine and inorganic sulfide. Here we report the cloning of cDNAs encoding cysteine synthase isoforms fromArabidopsis thaliana. The isolated cDNA clones encode for a mitochondrial and a plastidic isoform of cysteine synthase (O-acetylserine (thiol)-lyase, EC 4.2.99.8), designated cysteine synthase C (AtCS-C, CSase C) and B (AtCS-B; CSase B), respectively.AtCS-C andAtCS-B, having lengths of 1569-bp and 1421-bp, respectively, encode polypeptides of 430 amino acids (45.8 kD) and of 392 amino acids ( 41.8 kD), respectively. The deduced amino acid sequences of the mitochondrial and plastidic isoforms exhibit high homology even with respect to the presequences. The predicted presequence of AtCS-C has a N-terminal extension of 33 amino acids when compared to the plastidic isoform. Northern blot analysis showed thatAtCS-C is higher expressed in roots than in leaves whereas the expression ofAtCS-B is stronger in leaves. Furthermore, gene expression of both genes was enhanced by sulfur limitation which in turn led to an increase in enzyme activity in crude extracts of plants. Expression of theAtCS-B gene is regulated by light. The mitochondrial, plastidic and cytosolic (Hesse and Altmann, 1995) isoforms of cysteine synthase ofArabidopsis are able to complement a cysteine synthasedeficient mutant ofEscherichia coli unable to grow on minimal medium without cysteine, indicating synthesis of functional plant proteins in the bacterium. Two lines of evidence proved thatAtCS-C encodes a mitochondrial form of cysteine synthase; first, import ofin vitro translation products derived from AtCS-C in isolated intact mitochondria and second, Western blot analysis of mitochondria isolated from transgenic tobacco plants expressing AtCS-C cDNA/c-myc DNA fusion protein.Abbreviations CSase cysteine synthase The nucleotide sequence data reported will appear in the EMBL Database under the accession numbers X81973 forAtCS-C and X81698 forAtCS-B.  相似文献   

17.
The two predominant forms of arginase, cytosolic Arginase-I and mitochondrial Arginase-II, catalyze hydrolysis of arginine into ornithine and urea. Based on presence of arginase activity in extracts using potassium chloride (KCl), mitochondrial membrane-bound arginase has also been suggested. However, the activity of arginase in fractions obtained after KCl-treatment may be either due to leakage of mitochondrial arginase or release of adhered cytosolic arginase to cell organelles having altered net charge. Therefore, it has been intended to analyse impact of KCl on ultra-structural properties of mitochondria, and biochemical analysis of mitochondrial membrane-bound proteins and arginase of Heteropneustes fossilis. Liver of H. fossilis was used for isolating mitochondria for analysis of ultrastructural properties, preparing cytosolic, mitochondrial, and mitochondrial-membrane bound extracts after treatment of KCl. Extracts were analysed for arginase activity assay, protein profiling through SDS-PAGE and MALDI MS/MS. The KCl-mediated modulation in polypeptides and arginase were also evaluated by PANTHER, MitoProt and IPSORT servers. The effects of KCl on ultra-structural integrity of mitochondria, activity of arginase, modulation on mitochondrial proteins and enzymes including arginase were observed. The 48 kDa polypeptide of mitochondrial fraction, that showed KCl-dependent alteration matched with Myb binding protein and 30 kDa bands resembles to arginase after MALDI MS/MS analysis. Results indicate KCl-dependent ultrastructural changes in mitochondria and release of mitochondrial arginase. The proposed membrane bound mitochondrial arginase could be mitochondrial arginase-II or altered form of cytosolic arginase-I contributing to KCl-induced arginase activity in H. fossilis.  相似文献   

18.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

19.
Summary The specific activities of the branched chain amino acyl-tRNA synthetases from the cytosolic and mitochondrial fractions ofN. crassa were low in dormant conidia and increased during germination, reaching a maximum 8 h after inoculation. This stage of development is characterised by high rates of many other cellular activities.The increases in activity of synthetases of both cytosol and mitochondria are inhibited by cycloheximide indicating that they are synthesized on cytoplasmic ribosomes. The mitochondrial synthetases show a stimulation of their specific activity when mitochondrial RNA and protein synthesis are inhibited by either ethidium bromide or chloramphenicol suggesting that a mitochondrial translation product regulates the synthesis of the mitochondrial synthetases.The activities of amino acyl-tRNA synthetases are dependent on energy production. When respiration is uncoupled from oxidative phosphorylation, synthetase specific activities decrease although the activities of other mitochondrial enzymes like NADH-dehydrogenase increase. This phenomenon suggests that more than one mechanism regulates the synthesis of mitochondrial proteins which are formed on cytoplasmic ribosomes.The synthesis of branched chain amino acyl-tRNA synthetases ofNeurospora is neither repressed by their cognate amino acids, nor is there inhibition by the precursors of these amino acids, as has been observed in other amino acyl-tRNA synthetases of various organism includingNeurospora.  相似文献   

20.
The population of a strain ofEscherichia coli that was resistant to nalidixic acid and streptomycin declined rapidly in samples of sterile and nonsterile Cayuga Lake water and reached an undetectable level in nonsterile water at 24 and 72 hours when counted on eosin-methylene blue (EMB) agar and half-strength trypticase soy agar (TSA), respectively. In sterile lake water amended with 10g amino acids per ml or 0.1 M phosphate,E. coli multiplied exponentially for more than 24 hours. The addition ofRhizobium leguminosarum biovarphaseoli to unamended sterile lake water prevented the decline ofE. coli, and its addition to amended sterile lake water preventedE. coli multiplication. The cell density of this strain ofE. coli declined in the first 8 hours after its introduction into an inorganic salts solution, but the bacterium then grew extensively. This increase in abundance was not observed in the presence ofR. phaseoli, andE. coli counts on half-strength TSA remained unchanged between 8 hours and 6 days. When counted on EMB agar, the abundance of the antibiotic-resistant strain ofE. coli and a strain not selected for resistance increased in solutions containing phosphate and amino acids but declined in the presence of high densities ofR. phaseoli. Many of the cells of the antibiotic-resistantE. coli strain failed to grow on antibiotic-amended EMB agar after introduction of the organism into nonsterile or sterile lake water or into an inorganic salts solution containingR. phaseoli, although colonies appeared on TSA. The data suggest thatE. coli cells grown on rich media suffer a shock when introduced into lake water because of low hypotonicity, the indigenous competing flora, or both. This shock is prevented by either phosphate buffer or by amino acids at low concentration. The shocked bacteria formed colonies on half-strength TSA. Depending on environmental conditions, the presence of a second organism either has no effect or results in an increase or decrease inE. coli numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号