首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease.  相似文献   

5.
6.
7.
8.
9.
张振武  安洋  滕春波 《遗传》2009,31(11):1094-1100
microRNAs(miRNAs)是近年发现的一种高度保守的非编码小RNA, 它们通过抑制靶基因mRNA的翻译或将其降解, 在转录后水平调控基因的表达, 参与调控哺乳动物多个器官的发育过程和人类疾病的发生。miR-17-92基因簇是一个高度保守的基因簇, 编码miR-17-5p、miR-17-3p、miR-18a、miR-19a、miR-20a、miR-19b-1和miR-92-1等7个miRNAs。大量证据表明, miR-17-92基因簇miRNAs参与了心、肺、免疫系统的发育、血管生长及前脂肪细胞的分化等过程。此外, miR-17-92基因簇miRNAs在多种肿瘤中高表达, 能作为致癌基因诱发淋巴瘤和血管化肿瘤的发生, 但它也可以作为抑癌基因抑制乳腺癌细胞的增殖。文章对miR-17-92基因簇miRNAs在哺乳动物器官发育及肿瘤发生中的作用进行综述  相似文献   

10.
11.
12.
13.
14.
15.
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target mRNAs, leading to translational repression or degradation. The polycistronic microRNA cluster comprises seven mature microRNAs (miR-17-5p and – 3p, miR-18a, miR-19a and b, miR-20a and miR-92a) and has initially been linked to tumorigenesis. Meanwhile, additional functions have been assigned to the cluster such as the regulation of hematopoiesis and immune functions. Recently, loss-off-function studies revealed a critically role of the miR-17~92 cluster in heart and lung development and the individual miRNAs encoded by the cluster such as miR-17 and miR-92a were shown to control lung development and postnatal neovascularization, respectively. The present article summarizes the functions of the miR-17~92 cluster in health and disease and discusses the specific contribution and the targets of the individual miRNAs encoded by the cluster.  相似文献   

16.
Decreased expression of specific microRNAs (miRNAs) occurs in human tumors, which suggests a function for miRNAs in tumor suppression. Herein, levels of the miR-17-5p/miR-20a miRNA cluster were inversely correlated to cyclin D1 abundance in human breast tumors and cell lines. MiR-17/20 suppressed breast cancer cell proliferation and tumor colony formation by negatively regulating cyclin D1 translation via a conserved 3' untranslated region miRNA-binding site, thereby inhibiting serum-induced S phase entry. The cell cycle effect of miR-17/20 was abrogated by cyclin D1 siRNA and in cyclin D1-deficient breast cancer cells. Mammary epithelial cell-targeted cyclin D1 expression induced miR-17-5p and miR-20a expression in vivo, and cyclin D1 bound the miR-17/20 cluster promoter regulatory region. In summary, these studies identify a novel cyclin D1/miR-17/20 regulatory feedback loop through which cyclin D1 induces miR-17-5p/miR-20a. In turn, miR-17/20 limits the proliferative function of cyclin D1, thus linking expression of a specific miRNA cluster to the regulation of oncogenesis.  相似文献   

17.
Xu X  Hong Y  Kong C  Xu L  Tan J  Liang Q  Huang B  Lu J 《FEBS letters》2008,582(19):2850-2856
PTPRO is often silenced by DNA hypermethylation in primary human tumors and cancer cell lines and functions as a tumor suppressor. Here we show that PTPRO is a target of E2F1. In addition, the microRNA cluster miR-17-92, another target of E2F1, participates in PTPRO regulation. PTPRO mRNA was up-regulated during S phase in synchronized HeLa cells and in vitro PTPRO promoter activity is high in early S phase while the PTPRO 3'UTR reporter activity is low in late S phase. This study provides evidence that the PTPRO gene is co-regulated by both E2F1 and miR-17-92.  相似文献   

18.
19.
MicroRNAs (miRNAs) have a profound impact on cell processes, including proliferation, apoptosis, and stress responses. We aimed to explore the role of antisense oligonucleotide (ASO) to induce proliferation or apoptosis of A549 cancer cells by inhibiting the expression of miRNAs. After A549/HBE/293T cells were treated with ASO, cells proliferation/apoptosis, and their relevant oncogenes/tumor suppressor genes were detected by light and electron microscopy, real-time PCR, enzyme-linked immunosorbent assay, etc. The results showed that ASO could inhibit the expression of miRNAs effectively. miR-16, miR-17, miR-34a–c, and miR-125 served as tumor suppressor miRNAs, while miR-20, miR-106, and miR-150 acted as oncogenic miRNAs. Our results also indicated that miR-16/34a–c, miR-17-5p, miR-125, miR-106, and miR-150 were the upstream factors, which could regulate the expression of BCL-2, E2F1, E2F3, RB1, and P53, respectively. After A549 cells treated with ASO for 24 h and different concentrations of anti-cancer drug (cisplatin or demethylcantharidin) were added into culture medium, the results indicated the percentage of alive cells in group treated with both ASO-106 (or ASO-150) and anti-cancer drug was lower than that in group treated with ASO, or anti-cancer drug, or both ASO-16 (or ASO-34a) and anti-cancer drug. In conclusion, ASO (specific to oncogenic miRNAs) could induce A549 cells apoptosis by inhibiting oncogenic miRNAs, and could increase chemotherapy sensitivity of A549 cells to anti-cancer drug, which holds great promise to lung cancer therapy.  相似文献   

20.
Specific types of human papillomaviruses (HPVs) cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA) expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号