首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.  相似文献   

3.
Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3′- and 5′-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26–27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ∼35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.  相似文献   

4.
8-Halogenated guanine (haloG), a major DNA adduct formed by reactive halogen species during inflammation, is a promutagenic lesion that promotes misincorporation of G opposite the lesion by various DNA polymerases. Currently, the structural basis for such misincorporation is unknown. To gain insights into the mechanism of misincorporation across haloG by polymerase, we determined seven x-ray structures of human DNA polymerase β (polβ) bound to DNA bearing 8-bromoguanine (BrG). We determined two pre-catalytic ternary complex structures of polβ with an incoming nonhydrolyzable dGTP or dCTP analog paired with templating BrG. We also determined five binary complex structures of polβ in complex with DNA containing BrG·C/T at post-insertion and post-extension sites. In the BrG·dGTP ternary structure, BrG adopts syn conformation and forms Hoogsteen base pairing with the incoming dGTP analog. In the BrG·dCTP ternary structure, BrG adopts anti conformation and forms Watson-Crick base pairing with the incoming dCTP analog. In addition, our polβ binary post-extension structures show Hoogsteen BrG·G base pair and Watson-Crick BrG·C base pair. Taken together, the first structures of haloG-containing DNA bound to a protein indicate that both BrG·G and BrG·C base pairs are accommodated in the active site of polβ. Our structures suggest that Hoogsteen-type base pairing between G and C8-modified G could be accommodated in the active site of a DNA polymerase, promoting G to C mutation.  相似文献   

5.
Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR–TAR* (‘kissing hairpin’) RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The BIACORE data show an equilibrium dissociation constant of 1.58 nM for the complex containing the s2U modified TAR hairpin, which is 8-fold lower than for the parent hairpin (12.5 nM). This is a result of a 2-fold faster ka (4.14 × 105 M–1 s–1 versus 2.1 × 105 M–1 s–1) and a 4-fold slower kd (6.55 × 10–4 s–1 versus 2.63 × 10–3 s–1). 1H NMR imino spectra show that the secondary structure interactions involved in complex formation are retained in the s2U-modified complex. Magnesium has been reported to significantly stabilize the TAR–TAR* complex and we found that Mn2+ and Ca2+ are also strongly stabilizing, while Mg2+ exhibited the greatest effect on the complex kinetics. The stabilizing effects of 2-thiouridine indicate that this base modification may be generally useful as an antisense RNA modification for oligonucleotide therapeutics which target RNA loops.  相似文献   

6.
Molecular dynamics simulations have been performed on netropsin in two different charge states and on distamycin binding to the minor groove of the DNA duplex d(CGCGAAAAACGCG)·d(CGCGTTTTTCGCG). The relative free energy of binding of the two non-covalently interacting ligands was calculated using the thermodynamic integration method and reflects the experimental result. From 2 ns simulations of the ligands free in solution and when bound to DNA, the mobility and the hydrogen-bonding patterns of the ligands were studied, as well as their hydration. It is shown that even though distamycin is less hydrated than netropsin, the loss of ligand–solvent interactions is very similar for both ligands. The relative mobilities of the ligands in their bound and free forms indicate a larger entropic penalty for distamycin when binding to the minor groove compared with netropsin, partially explaining the lower binding affinity of the distamycin molecule. The detailed structural and energetic insights obtained from the molecular dynamics simulations allow for a better understanding of the factors determining ligand–DNA binding.  相似文献   

7.
αβ-tubulin dimers need to convert between a ‘bent’ conformation observed for free dimers in solution and a ‘straight’ conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol) and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated.  相似文献   

8.
9.
10.
Hydrogen bond networks stabilize RNA secondary and tertiary structure and are thus essentially important for protein recognition. During structure refinements using either NMR or X-ray techniques, hydrogen bonds were usually inferred indirectly from the proximity of donor and acceptor functional groups. Recently, quantitative heteronuclear J(N,N)-HNN COSY NMR experiments were introduced that allowed the direct identification of donor and acceptor nitrogen atoms involved in hydrogen bonds. However, protons involved in base pairing interactions in nucleic acids are often not observable due to exchange processes. The application of a modified quantitative J(N,N)-HNN COSY pulse scheme permits observation of 2hJ(N,N) couplings via non-exchangeable protons. This approach allowed the unambiguous identification of the A27·U23 reverse Hoogsteen base pair involved in a U-A·U base triple in the HIV-2 transactivation response element–argininamide complex. Despite a wealth of NOE information, direct evidence for this interaction was lacking due to the rapid exchange of the U23 imino proton. The ability to directly observe hydrogen bonds, even in D2O and in the presence of rapid exchange, should facilitate structural studies of RNA.  相似文献   

11.
The binding of the antibiotics netropsin and distamycin A to DNA has been studied by thermal melting, CD and sedimentation analysis. Netropsin binds strongly at antibiotic/nucleotide ratios up to at least 0.05. CD spectra obtained using DNA model polymers reveal that netropsin binds tightly to poly (dA) · poly (dT), poly (dA-dT) · poly(dA-dT) and poly (dI-dC) · poly (dI-dC) but poorly, if at all, to poly (dG) · poly (dC). Binding curves obtained with calf thymus DNA reveal one netropsin-binding site per 6.0 nucleotides (Ka=2.9 · 105 M−1); corresponding values for distamycin A are one site per 6.1 nucleotides with Ka= 11.6 · 105 M−1. Binding sites apparently involve predominantly A·T-rich sequences whose specific conformation determines their high affinity for the two antibiotics. It is suggested that the binding is stabilized primarily by hydrogen bonding and electrostatic interactions probably in the narrow groove of the DNA helix, but without intercalation. Any local structural deformation of the helix does not involve unwinding greater than approximately 3° per bound antibiotic molecule.  相似文献   

12.
Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway.  相似文献   

13.
Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an α-galactose residue at their nonreducing end, such as the disaccharides αGal1–2βGalOMe, αGal1–3βGalOMe, and αGal1–4βGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL·αGal1–2βGalOMe complex, which was solved at 2.4 Å resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1–2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.  相似文献   

14.
Four-way junctions (4Hs) are important intermediates in DNA rearrangements such as genetic recombination. Under the influence of multivalent cations these molecules undergo a conformational change, from an extended planar form to a quasi-continuous stacked X-structure. Recently, a number of X-ray structures and a nuclear magnetic resonance (NMR) structure of 4Hs have been reported and in three of these the position of multivalent cations is revealed. These structures belong to two main families, characterized by the angle between the two co-axial stacked helices, which is either around +40 to +55° or around –70 to –80°. To investigate the role of metal-ion binding on the conformation of folded 4Hs we performed Brownian-dynamics simulations on the set of available structures. The simulations confirm the proposed metal-ion binding sites in the NMR structure and in one of the X-ray structures. Furthermore, the calculations suggest positions for metal-ion binding in the other X-ray structures. The results show a striking dependence of the ion density on the helical environment (B-helix or A-helix) and the structural family.  相似文献   

15.
Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.  相似文献   

16.
The cissyn cyclobutane pyrimidine dimer (CPD) is a cytotoxic, mutagenic and carcinogenic DNA photoproduct and is repaired by the nucleotide excision repair (NER) pathway in mammalian cells. The XPC–hHR23B complex as the initiator of global genomic NER binds to sites of certain kinds of DNA damage. Although CPDs are rarely recognized by the XPC–hHR23B complex, the presence of mismatched bases opposite a CPD significantly increased the binding affinity of the XPC–hHR23B complex to the CPD. In order to decipher the properties of the DNA structures that determine the binding affinity for XPC–hHR23B to DNA, we carried out structural analyses of the various types of CPDs by NMR spectroscopy. The DNA duplex which contains a single 3′ T·G wobble pair in a CPD (CPD/GA duplex) induces little conformational distortion. However, severe distortion of the helical conformation occurs when a CPD contains double T·G wobble pairs (CPD/GG duplex) even though the T residues of the CPD form stable hydrogen bonds with the opposite G residues. The helical bending angle of the CPD/GG duplex was larger than those of the CPD/GA duplex and properly matched CPD/AA duplex. The fluctuation of the backbone conformation and significant changes in the widths of the major and minor grooves at the double T·G wobble paired site were also observed in the CPD/GG duplex. These structural features were also found in a duplex that contains the (6–4) adduct, which is efficiently recognized by the XPC–hHR23B complex. Thus, we suggest that the unique structural features of the DNA double helix (that is, helical bending, flexible backbone conformation, and significant changes of the major and/or minor grooves) might be important factors in determining the binding affinity of the XPC–hHR23B complex to DNA.  相似文献   

17.
Mu Y  Stock G 《Biophysical journal》2006,90(2):391-399
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.  相似文献   

18.
19.
Free-energy terms that contribute to complex formation between the catalytic domain of botulinum neurotoxin type B (BoNT/B-L(C)) and a 36-residue synaptobrevin fragment were estimated by using a combination of microscopic simulations and continuum methods. The complex for a non-hydrolyzed substrate was calculated by optimizing an energy function applied to the X-ray co-crystal structure of BoNT/B-L(C) bound with reaction products from a cleaved synaptobrevin peptide, refined to high crystallographic thermal factors. The estimated absolute binding affinity of the simulation structure is in good qualitative agreement with the experimental free energy of Michaelis complex formation, given the approximations of the model calculations. The simulation structure revealed significant complex stabilization from the hydrophobic effect, while the electrostatic cost of releasing water molecules from the interface determined to be highly unfavorable. By partitioning the total electrostatic and hydrophobic terms into residue free-energy contributions, a binding-affinity 'signature' for synaptobrevin was developed from the optimized conformation. The results demonstrate the effect of substrate length on complex formation and identify a peripheral high-affinity binding site near the N-terminal region that might initiate cooperative activation responsible for the large minimal substrate length requirement. The so-called SNARE motif is observed to contribute negligible free energy of binding.  相似文献   

20.
5-Fluorouridine residues have been introduced into functionally important bulge and loop regions of 29-mer HIV-1 TAR RNA hairpins I and II to study Mg2+ and Ca2+ binding using 19F-NMR spectroscopy. There was no substantial binding detected up to 20-molar excess in case of both cations, whereas association of argininamide, used as a reference ligand, could be detected at less than 1-molar excess. The deltadelta 19F value of 1.93 ppm observed for (F)U23 upon argininamide binding is in agreement with former NMR studies of TAR RNA/argininamide complex. However, obtained results do not confirm U38 x A27 x U23 base-triple formation. The unmodified HIV-1 TAR RNA hairpin resulted from 600 ps in aqua molecular dynamics simulation was subjected to a molecular mechanics modelling of Mg+ binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号