首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The usefulness of the tooth germ in culture arises from the fact that it exemplifies those fundamental attributes of development, cell proliferation, cytodifferentiation, and morphogenesis, which we expect to find in the development of any metazoan organism. In culture, as in the organism, such development takes place in 3 dimensions. This study was undertaken to determine if it is possible to uncouple, by using 2 dimensions, cytodifferentiation from morphogenesis. Under the conditions used, cytodifferentiation in culture was not apparent (at the light microscope level). However, the following interesting observations were made: Cell populations arising from the same types of explants (enamel organ/enamel organ or dental papilla/dental papilla) readily flow together. Cell populations arising from dissimilar types of explants (enamel organ/dental papilla) form sharp boundaries at their interfaces. Additionally, cell populations arising from intact tooth germs differ from those arising from either enamel organs or dental papillae.  相似文献   

3.
4.
The signaling activity of Platelet-derived growth factors A and B (PDGF-A and PDGF-B) that is mediated through the two receptor kinases, PDGFR-alpha and PDGFR-beta has been shown to be critical for the development of the cardiovascular organs, the kidney, the lung and the central nervous system. During the cloning of genes for VEGF related proteins, we isolated a mouse cDNA that can encode for a protein of 345 amino acids. A comparison of the amino acid sequence reveals that this predicted gene product displays 95% identity to human PDGF-C. The mouse Pdgfc gene maps to a region of chromosome 17 that is syntenic to human chromosome 6p21.3 In E9. 5-E15.5 mouse embryo, Pdgfc is widely expressed in the surface ectoderm and later in the germinal layer of the skin, the olfactory and otic placode and their derivatives and the lining of the oral cavity. In the gut and visceral organs, such as the lung and the kidney, Pdgfc mRNA is first expressed in the endodermal epithelium and later in mesenchymal tissues associated with the endodermal structures. Similar to other PDGFs, Pdgfc is widely expressed in mesenchymal precursors and the myoblast of the smooth and skeletal muscles. Contrary to PDGF-A, Pdgfc is not expressed in the central nervous system, except in the cerebellum, and neurogenic derivatives of the neural crest cells. Pdgfc is also absent from the heart and the vascular endothelium  相似文献   

5.
6.
7.
A mathematical model simulating spatial pattern formation (positioning) of floral organs is proposed. Computer experiment with this model demonstrated the following sequence of spatial pattern formation in a typical cruciferous flower: medial sepals, carpels, lateral sepals, long stamens, petals, and short stamens. The positioning was acropetal for the perianth organs and basipetal for the stamens and carpels. Organ type specification and positioning proceed non-simultaneously in different floral parts and organ type specification goes ahead of organ spatial pattern formation. Computer simulation of flower development in several mutants demonstrated that the AG and AP2 genes determine both organ type specification and formation of the zones for future organ development. The function of the AG gene is to determine the basipetal patterning zones for the development of the reproductive organs, while the AP2 gene maintains proliferative activity of the meristem establishing the acropetal patterning zone for the development of the perianth organs.  相似文献   

8.
衰老的特征是组织器官的功能衰退以及衰老相关疾病风险的增加,这给维护和促进健康长寿带来一系列新的挑战。尽管进行了广泛的衰老相关研究,但进展有限。人们越来越意识到肠道微生物群的结构和功能积极参与了衰老过程。肠道微生物群紊乱表现为许多与年龄相关的肠外器官轴的衰老。肠道微生物群可以被调节,这暗示了通过肠道微生物群抗衰老是一个可以实现的重要目标。本综述总结了肠道微生物群在不同年龄段中的动态演替,这种动态的肠道微生物群从胎儿到出生和婴儿期开始迅速发展,从断奶期到幼儿期迅速变化,然后建立稳定的成年人菌群,直到随着年龄增长最后发生衰退;肠道微生物群与肠外器官轴(大脑、心脏、肝脏、胰腺、肌肉、皮肤和骨骼)衰老相关疾病,以及通过饮食、粪菌移植和微生态制剂调节肠道微生物群靶向抗衰老的研究进展,以期为调控肠道微生物群抗衰老研究提供参考。  相似文献   

9.
Individuals within a species, living across a wide range of habitats, often display a great deal of phenotypic plasticity for organ mass and function. We investigated the extent to which changes in organ mass are variable, corresponding to environmental demand, across an altitudinal gradient. Are there changes in the mass of oxygen delivery organs (heart and lungs) and other central processing organs (gut, liver, kidney) associated with an increased sustainable metabolic rate that results from decreased ambient temperatures and decreased oxygen availability along an altitudinal gradient? We measured food intake, resting metabolic rate (RMR), and organ mass in captive deer mice (Peromyscus maniculatus bairdii) at three sites from 1,200 to 3,800 m above sea level to determine whether energy demand was correlated with organ mass. We found that food intake, gut mass, and cardiopulmonary organ mass increased in mice living at high altitudes. RMR was not correlated with organ mass differences along the altitudinal gradient. While the conditions in this study were by no means extreme, these results show that mice living at high altitudes have higher levels of energy demand and possess larger cardiopulmonary and digestive organs than mice living at lower altitudes.  相似文献   

10.
11.
12.
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals.  相似文献   

13.
14.
Most internal organs are situated in a coelomic cavity and are covered by a mesothelium. During heart development, epicardial cells (a mesothelium) move to and over the heart, undergo epithelial-mesenchymal transition (EMT), and subsequently differentiate into endothelial and vascular smooth muscle cells. This is thought to be a unique process in blood vessel formation. Still, structural and developmental similarities between the heart and gut led us to test the hypothesis that a conserved or related mechanism may regulate blood vessel development to the gut, which, similar to the heart, is housed in a coelomic cavity. By using a combination of molecular genetics, vital dye fate mapping, organ culture and immunohistochemistry, we demonstrate that the serosal mesothelium is the major source of vasculogenic cells in developing mouse gut. Our studies show that the gut is initially devoid of a mesothelium but that serosal mesothelial cells expressing the Wilm's tumor protein (Wt1) move to and over the gut. Subsequently, a subset of these cells undergoes EMT and migrates throughout the gut. Using Wt1-Cre genetic lineage marking of serosal cells and their progeny, we demonstrate that these cells differentiate to smooth muscle of all major blood vessels in the mesenteries and gut. Our data reveal a conserved mechanism in blood vessel formation to coelomic organs, and have major implications for our understanding of vertebrate organogenesis and vascular deficiencies of the gut.  相似文献   

15.
16.
17.
18.
19.
Levi I  Segev Y  Priel E 《Glycobiology》2012,22(5):704-713
Chronic hyperglycemia leads to the development of diabetes-induced organ complications, through changes in gene expression and protein function. We previously showed that in cell lines, topoisomerase I (topo I) is modified by O-GlcNAcylation, which affects its DNA relaxation activity. Since topo I participates in gene expression processes, we assumed that high glucose levels will affect its regulation and activity. Here we examined the effect of hyperglycemia on the regulation, GlcNAcylation and activity of topo I, in various internal rat organs that were subjected to diabetes-induced complications. Type 1 diabetes was induced in female rats by Streptozotocin injection. Topo I activity in nuclear protein extracts derived from diabetic and nondiabetic rat organs and topo I mRNA level were examined. Topo I and O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase proteins and their O-GlcNAcylation were determined by western blot and immunoprecipitation assays. We show that topo I activity and enzyme protein level decreased in various tissues derived from the diabetic animals, whereas the enzyme mRNA level was not altered. Topo I protein was modified in vivo by O-GlcNAc, and O-GlcNAc transferase was coprecipitated with topo I protein, suggesting a possible interaction between both enzymes. This study demonstrates, for the first time, that topo I activity is regulated by high glucose levels, as a result of the diabetic state and is modified in vivo by O-GlcNAcylation, suggesting that topo I, an essential enzyme for gene expression, is involved in cellular processes which may lead to the pathogenesis of diabetic complications.  相似文献   

20.
A novel immunoglobulin superfamily (Igsf) protein gene was discovered by computational analysis of human draft genomic DNA, and multiple cDNA clones were obtained. The protein encoded by this gene contains five Ig domains, one transmembrane domain, and an intracellular domain. It has significant similarity with several known Igsf proteins, including Drosophila RST (irregular chiasm C-roughest) protein and mammalian KIRREL (kin of irregular chiasm C-roughest), NEPH1, and NPHS1 (nephrin) proteins. All these proteins have multiple Ig domains, possess properties of cell adhesion molecules, and play important roles in organ development. RT-PCR and Northern blot results indicate this gene is predominantly expressed in pancreas, and public sequence databases indicate there is also expression in the nervous system. We have named this gene Kirrel2 (kin of irregular chiasm-like 2), to reflect its similarity to irregular chiasm C-roughest and Kirrel. Four splice forms of Kirrel2 were observed, including two that we cloned from pancreas mRNA as well as two GenBank entries, one from the brain and one from a retinoblastoma cell line. A partial cDNA clone of the mouse orthologue was obtained by RT-PCR from mouse brain, and the inferred protein sequence has 85% sequence identity to the human protein. Immunohistochemical staining results indicate that the KIRREL2 protein is conserved from rodents to primates, and it is highly expressed in pancreatic islets. RT-PCR results on mouse pancreatic cell lines indicate that expression in the pancreas is restricted to beta cells. Thus, KIRREL2 protein is a beta-cell-expressed Ig domain protein and may be involved in pancreas development or beta cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号