首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The contribution of voltage-gated calcium channels to excitable cell function depends, critically, upon the mechanisms that control their expression at the cell surface. While co-assembly of the pore forming alpha(1) and auxiliary beta subunits enhances channel surface expression, the levels are still only 30-40% of those seen with the core alpha(1B)/beta(1b)/alpha(2)delta calcium channel complex. To rationalize this observation, it has been suggested that the alpha(2)/delta subunit might stabilize calcium channel expression at the cell surface. To test this notion, we have resolved the effect of the alpha(2)/delta subunit on the rates of binding, internalization and degradation of defined N-type calcium channel surface complexes expressed in HEK293 cells, through pulse-labeling with the selective, cell impermeable, radioligand [(125)I]-omega-CgTx. Through detailed kinetic and sensitivity analysis we show that alpha(1B)/beta(1b)/alpha(2)delta complexes are internalized slowly (k(int) 0.4/h), whereupon, most become degraded (k(deg) 0.02/h). In contrast, alpha(1B)/beta(1b) complexes are internalized more rapidly (k(int) 0.8/h), following which they are either quickly degraded (k(deg) 0.1/h) or are sequestered slowly (k(tra) 0.1/h) to a pool that is metabolically stable within the time-frame of our experiments (24h). In neither case did we find evidence for recycling via the cell surface. Thus, our data argue for a novel mechanism where complexes lacking an alpha(2)/delta subunit are cleared from the cell surface and are rapidly degraded or stored, possibly for further attempts at complexation as new alpha(2)/delta subunits become available. The slower rate of internalization of complexes containing the alpha(2)/delta subunit rationalizes the stabilizing effect this subunit has upon calcium channel surface expression and suggests a mechanism by which alpha(2)delta mutations may cause severe neurological deficits.  相似文献   

2.
Screening of a genomic DNA library with a portion of the cDNA encoding the gamma-aminobutyric acid (GABA) receptor subunit rho1 identified two distinct clones. DNA sequencing revealed that one clone contained a single exon from the rho1 gene (GABBR1) while the second clone encompassed an exon with 96% identity to the rho1 gene. Screening of a human retina cDNA library with oligonucleotides specific for the exon in the second clone identified a 3-kb cDNA with an open reading frame of 1395 bp. The predicted amino acid sequence of this cDNA demonstrates 30 to 38% similarity to alpha, beta, gamma, and delta GABA receptor subunits and 74% similarity to the GABA rho1 subunit suggesting that the newly isolated cDNA encodes a new member of the rho subunit family, tentatively named GABA rho2. Polymerase chain reaction (PCR) amplification of rho1 and rho2 gene sequences from DNA of three somatic cell hybrid panels maps both genes to human chromosome 6, bands q14 to q21. Tight linkage was also demonstrated between restriction fragment length variants (RFLVs) from each rho gene and the Tsha locus on mouse chromosome 4, which is homologous to the CGA locus on human chromosome 6q12-q21. These two lines of evidence confirm that GABRR1 and newly identified GABRR2 map to the same region on human chromosome 6. This close physical association and high degree of sequence similarity raises the possibility that one rho gene arose from the other by duplication.  相似文献   

3.
Expression and membrane localization of an epitope-tagged human Ca(2+) channel alpha(1C) subunit were monitored in Xenopus oocytes by confocal microscopy and electrophysiological recording. When alpha(2)/delta and beta(2a) were separately coexpressed with the alpha(1C) subunit, assessment by confocal microscopy showed an 86 and 225% increase of the channel density, respectively. Simultaneous coexpression of alpha(2)/delta and beta(2a) subunits resulted in a cooperative (470%) increase. Electrophysiological measurements performed in parallel revealed that the current augmentation by the alpha(2)/delta subunit is totally attributable to an increase in channel density, whereas the beta(2a) subunit, in addition to increasing channel density, also facilitates channel opening.  相似文献   

4.
Previous studies [Summercorn et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8834-8838; Klarlung & Czech (1988) J. Biol. Chem. 263, 15872-15875] have indicated that Balb/c 3T3 cells and 3T3-L1 adipocytes incubated with insulin show increased casein kinase II activity within minutes, implicating this serine/threonine kinase as an early step in an insulin signaling pathway. We recently reported the isolation of a cDNA encoding an alpha subunit of human casein kinase II [Meisner et al. (1989) Biochemistry 28, 4072-4076] as an initial step toward examining the regulation of this enzyme. We now describe a HepG2 cell casein kinase II beta subunit cDNA of 2.57 kb containing 96 bases of 5' untranslated sequence, 645 bases of open reading frame, and 1832 bases of 3' untranslated sequence with two polyadenylation consensus signal sequences and two poly(A) stretches. The open reading frame of the human beta subunit cDNA was 77% and 87% identical with the Drosophila sequence at the nucleotide and amino acid levels, respectively, and 99% identical with the bovine amino acid sequence. RNA analysis of HepG2 cell RNA utilizing HepG2 beta subunit cDNA fragments as probes revealed one major band migrating at 1.2 kb and two minor bands migrating at 3.0 and 4.2 kb. Results from DNA analysis of HepG2 genomic DNA, consistent with results utilizing Drosophila genomic DNA, suggest the presence of a single gene for the beta subunit of casein kinase II.  相似文献   

5.
6.
We have positionally cloned and characterized a new calcium channel auxiliary subunit, alpha(2)delta-2 (CACNA2D2), which shares 56% amino acid identity with the known alpha(2)delta-1 subunit. The gene maps to the critical human tumor suppressor gene region in chromosome 3p21.3, showing very frequent allele loss and occasional homozygous deletions in lung, breast, and other cancers. The tissue distribution of alpha(2)delta-2 expression is different from alpha(2)delta-1, and alpha(2)delta-2 mRNA is most abundantly expressed in lung and testis and well expressed in brain, heart, and pancreas. In contrast, alpha(2)delta-1 is expressed predominantly in brain, heart, and skeletal muscle. When co-expressed (via cRNA injections) with alpha(1B) and beta(3) subunits in Xenopus oocytes, alpha(2)delta-2 increased peak size of the N-type Ca(2+) currents 9-fold, and when co-expressed with alpha(1C) or alpha(1G) subunits in Xenopus oocytes increased peak size of L-type channels 2-fold and T-type channels 1.8-fold, respectively. Anti-peptide antibodies detect the expression of a 129-kDa alpha(2)delta-2 polypeptide in some but not all lung tumor cells. We conclude that the alpha(2)delta-2 gene encodes a functional auxiliary subunit of voltage-gated Ca(2+) channels. Because of its chromosomal location and expression patterns, CACNA2D2 needs to be explored as a potential tumor suppressor gene linking Ca(2+) signaling and lung, breast, and other cancer pathogenesis. The homologous location on mouse chromosome 9 is also the site of the mouse neurologic mutant ducky (du), and thus, CACNA2D2 is also a candidate gene for this inherited idiopathic generalized epilepsy syndrome.  相似文献   

7.
8.
The nicotinic acetylcholine receptor of skeletal muscle (CHRN in man, Acr in mouse) is a transmembrane protein composed of four different subunits (alpha, beta, gamma, and delta) assembled into the pentamer alpha 2 beta gamma delta. These subunits are encoded by separate genes which derive from a common ancestral gene by duplication. We have used a murine full-length 1,900-bp-long cDNA encoding the gamma subunit subcloned into M 13 (clone gamma 18) to prepare single-stranded probes for hybridization to EcoRI-digested DNA from a panel of human x rodent somatic cell hybrids. Using conditions of low stringency to favor cross-species hybridization, and prehybridization with rodent DNA to prevent rodent background, we detected a single major human band of 30-40 kb. The pattern of segregation of this 30-40 kb band correlated with the segregation of human chromosome 2 within the panel and the presence of a chromosomal translocation in the distal part of the long arm of this t(X;2)(p22;q32.1) chromosome allowing the localization of the gamma subunit gene (CHRNG) to 2q32----qter. The human genes encoding the gamma and delta subunits have been shown to be contained in an EcoRI restriction fragment of approximately 20 kb (Shibahara et al., 1985). Consequently, this study also maps the delta subunit gene (CHRND) to human chromosome 2q32.1----qter. In the mouse, the Acrd and Acrg genes have been shown to be linked to Idh-1, Mylf (IDH1 and MYL1 in humans, respectively) and to the gene encoding villin on chromosome 1. Interestingly, we have recently localized the human MYL1 gene to the same chromosomal fragment of human chromosome 2. These results clearly demonstrate a region of chromosomal homoeology between mouse chromosome 1 and human chromosome 2.  相似文献   

9.
10.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

11.
Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two alpha or alpha' subunits (or one of each) and two beta subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell lambda gt10 library using cDNA clones isolated from Drosophila melanogaster [Saxena et al. (1987) Mol. Cell. Biol. 7, 3409-3417]. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 clone was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells [Meisner et al. (1989) Biochemistry 28, 4072-4076]. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 bp (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of alpha and alpha' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the alpha and alpha' subunits of casein kinase II. Microsequence data determined from separated preparations of bovine casein kinase II alpha subunit and alpha' subunit [Litchfield et al. (1990) J. Biol. Chem. 265, 7638-7644] confirmed that hT4.1 encoded the alpha subunit and hT9.1 encoded the alpha' subunit. These studies show that there are two distinct catalytic subunits for casein kinase II (alpha and alpha') and that the sequence of these subunits is largely conserved between the bovine and the human.  相似文献   

12.
cDNA complementary to mRNA coding for the beta subunit of dog renal (Na+ + K+)-ATPase has been cloned into lambda gt11 and the nucleotide sequence of the DNA has been determined. The amino acid sequence of the beta subunit polypeptide has also been deduced from the DNA. The mature form of the dog kidney beta subunit contains 302 amino acids with three potential asparagine-linked attachment sites for carbohydrate. The initiation methionine is removed during processing of the polypeptide to its mature form. Although the beta subunit is an integral membrane protein there is no signal sequence for the polypeptide, and hydropathy analysis predicts that the beta subunit polypeptide spans the cell membrane only once. Secondary structure predictions and a model for the structure of the beta subunit are proposed. DNA sequencing of the 5' non-coding region of the mRNA revealed a 200 bp inverted repeat from the coding region. Blot hybridization of a fragment of the beta subunit cDNA identified a single mRNA species of 2.7 kb in dog kidney and several rat tissues. RNA from rat liver was deficient in mRNA that hybridized to the dog kidney beta subunit cDNA, although mRNA that hybridized to an alpha subunit cDNA was detected. RNA from a human hepatoma cell line, HepG2, however, contained comparable levels of mRNA for both the alpha and the beta subunits.  相似文献   

13.
Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes.  相似文献   

14.
We present evidence for the existence of two forms of the catalytic (C) subunit of the cAMP-dependent protein kinase. A lambda gt-11 cDNA library constructed from poly(A)-rich RNA from the porcine kidney cell line, LLC-PK1, was screened using a 1.5-kb EcoRI fragment from a bovine cDNA for the C subunit. Two independent classes of cDNAs were identified on the basis of partial restriction map and sequence data. These two cDNAs, lambda CAT4 and lambda CAT3, apparently encode two forms of C subunit designated C alpha and C beta, respectively. The nucleotide sequence of the C alpha and C beta cDNAs revealed differences in the coding region and particularly in the 3' untranslated region. However, the deducted amino acid sequences of C alpha and C beta subunits were 96% homologous to the sequences so far determined. Specific probes from the 3' coding region of the two cDNA species were used to investigate C subunit mRNA expression in LLC-PK1 cells. Northern analysis showed a major mRNA species of 2.8 kb with the C alpha probe while the C beta probe detected two mRNA species of 5.0 kb and 3.8 kb. These data were supported by genomic blot analysis which showed distinct hybridization patterns with either the C alpha or C beta probes. All the available evidence suggests that at least two distinct genes encode the C subunit which are expressed in LLC-PK1 cells.  相似文献   

15.
The omega-conotoxins from fish-hunting cone snails are potent inhibitors of voltage-gated calcium channels. The omega-conotoxins MVIIA and CVID are selective N-type calcium channel inhibitors with potential in the treatment of chronic pain. The beta and alpha(2)delta-1 auxiliary subunits influence the expression and characteristics of the alpha(1B) subunit of N-type channels and are differentially regulated in disease states, including pain. In this study, we examined the influence of these auxiliary subunits on the ability of the omega-conotoxins GVIA, MVIIA, CVID and analogues to inhibit peripheral and central forms of the rat N-type channels. Although the beta3 subunit had little influence on the on- and off-rates of omega-conotoxins, coexpression of alpha(2)delta with alpha(1B) significantly reduced on-rates and equilibrium inhibition at both the central and peripheral isoforms of the N-type channels. The alpha(2)delta also enhanced the selectivity of MVIIA, but not CVID, for the central isoform. Similar but less pronounced trends were also observed for N-type channels expressed in human embryonic kidney cells. The influence of alpha(2)delta was not affected by oocyte deglycosylation. The extent of recovery from the omega-conotoxin block was least for GVIA, intermediate for MVIIA, and almost complete for CVID. Application of a hyperpolarizing holding potential (-120 mV) did not significantly enhance the extent of CVID recovery. Interestingly, [R10K]MVIIA and [O10K]GVIA had greater recovery from the block, whereas [K10R]CVID had reduced recovery from the block, indicating that position 10 had an important influence on the extent of omega-conotoxin reversibility. Recovery from CVID block was reduced in the presence of alpha(2)delta in human embryonic kidney cells and in oocytes expressing alpha(1B-b). These results may have implications for the antinociceptive properties of omega-conotoxins, given that the alpha(2)delta subunit is up-regulated in certain pain states.  相似文献   

16.
We characterized the neuronal two-domain (95kD-alpha(1)2.1) form of the alpha(1)2.1 subunit of the voltage-gated calcium channels using genetic and molecular analysis. The 95kD-alpha(1)2.1 is absent in neuronal preparations from CACNA1A null mouse demonstrating that alpha(1)2.1 and 95kD-alpha(1)2.1 arise from the same gene. A recombinant two-domain form (alpha(1AI-II)) of alpha(1)2.1 associates with the beta subunit and is trafficked to the plasma membrane. Translocation of the alpha(1AI-II) to the plasma membrane requires association with the beta subunit, since a mutation in the alpha(1AI-II) that inhibits beta subunit association reduces membrane trafficking. Though the alpha(1AI-II) protein does not conduct any voltage-gated currents, we have previously shown that it generates a high density of non-linear charge movements [Ahern et al., Proc. Natl. Acad. Sci. USA 98 (2001) 6935-6940]. In this study, we demonstrate that co-expression of the alpha(1AI-II) significantly reduces the current amplitude of alpha(1)2.1/beta(1a)/alpha(2)delta channels, via competition for the beta subunit. Taken together, our results demonstrate a dual functional role for the alpha(1AI-II) protein, both as a voltage sensor and modulator of P/Q-type currents in recombinant systems. These studies suggest an in vivo role for the 95kD-alpha(1)2.1 in altering synaptic activity via protein-protein interactions and/or regulation of P/Q-type currents.  相似文献   

17.
Both genomic and complementary DNA clones encoding poliovirus receptors were isolated from genomic and complementary DNA libraries prepared from HeLa S3 cells, respectively. Nucleotide sequence analysis of these cloned DNAs revealed that the poliovirus receptor gene is approximately 20 kb long and contains seven introns in the coding region, and that at least four mRNA isoforms referring to the coding sequence are generated by alternative splicing and appear to encode four different molecules, that is, PVR alpha, PVR beta, PVR gamma and PVR delta. The predicted amino acid sequences indicate that PVR alpha and PVR delta, corresponding to the previously described cDNA clones H20A and H20B, respectively, are integral membrane proteins while the other two molecules described here for the first time lack a putative transmembrane domain. Mouse cell transformants carrying PVR alpha were permissive for poliovirus infection, but those carrying PVR beta were hardly permissive. In contrast to PVR alpha, PVR beta was not detected on the surface of the mouse cell transformants but was detected in the culture fluid by an immunological method using a monoclonal antibody against poliovirus receptor. Three types of splicing products for PVR alpha, PVR beta and PVR gamma were detected by polymerase chain reactions using appropriate primers in poly(A)+ RNAs of the brain, leukocyte, liver, lung and placenta of humans; the choice of primers used did not permit detection of PVR delta. In situ hybridization using a cDNA fragment as a probe demonstrated that the PVR gene is located at the band q13.1----13.2 of human chromosome 19.  相似文献   

18.
Two libraries, together containing about 10(6) colonies, have been constructed by cloning different size fractions of a partial Sau3A digest of rat genomic DNA in the cosmid vector pTM. Upon screening with two cDNA clones, one containing alpha A2-crystallin and one containing beta B1-crystallin sequences, 14 cosmid clones were isolated which were beta B1-crystallin-specific; none was found which contained alpha A2-crystallin sequences. The inserts of the beta B1 clones, which range from 35 to 45 kb in length, contain overlapping DNA segments covering more than 60 kb of rat genomic DNA. The composite BamHI restriction map of this region shows a single beta B1-crystallin gene, which is interrupted by several intronic sequences. Five recombinants hybridizing with two different rat lens gamma-crystallin cDNA clones were also isolated from these libraries. Four of these contain 31- to 41-kb inserts, whereas the fifth recombinant contains a 12.2-kb insert. Hybridization analysis with 5' and 3'-specific cDNA fragments indicates that altogether these inserts contain six gamma-crystallin genes, three of which are located on one insert of only 31 kb.  相似文献   

19.
A new zinc ribbon gene (ZNRD1) is cloned from the human MHC class I region   总被引:6,自引:0,他引:6  
Fan W  Wang Z  Kyzysztof F  Prange C  Lennon G 《Genomics》2000,63(1):139-141
  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) is an oligomeric transmembrane glycoprotein consisting of four homologous subunits in stoichiometry of alpha 2, beta (gamma or epsilon). Recently the presence of a novel exon (P3A) in human alpha AChR gene has been reported. Two variants of the human alpha subunit arise from alternate RNA splicing, one with and one without the P3A exon. However, the evolutionary origin of the P3A exon and the regulation of the expression of the two variants in human muscle and non-human tissues is currently unknown. Examination of genomic DNA from various species shows that the P3A exon sequence is present only in hominoids, old world and new world primates species and is absent in the muscle cDNA or genomic DNA from rat, mouse or dog, indicating that P3A exon is evolutionary conserved for at least 50 million years. The P3A+ variant of alpha subunit was found to be constitutively expressed in skeletal muscle, brain, heart, kidney, liver, lung and thymus, while P3A-variant was differentially expressed only in skeletal muscle. Thus it appears that the P3A+ variant is generated by 'default' selection by the splicing machinery, while expression of the P3A- variant is regulated by tissue-specific factors in the skeletal muscle. Mechanisms regulating differential expression of the alpha subunit variants may be pertinent to the pathophysiology of myasthenia gravis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号