共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermodynamic parameters of an antiparallel G-quartet formation of d(G4T4G4) with 1 mM divalent cation (Mg(2+), Ca(2+), Mn(2+), Co(2+), and Zn(2+)) were obtained. The thermodynamic parameters showed that the divalent cation destabilizes the antiparallel G-quartet of d(G4T4G4) in the following order: Zn(2+)>Co(2+)>Mn(2+)>Mg(2+)>Ca(2+). In addition, a higher concentration of a divalent cation induced a transition from an antiparallel to a parallel G-quartet structure. These results indicate that these divalent cations are a good tool for regulating the G-quartet structures. 相似文献
2.
NMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations. 总被引:1,自引:0,他引:1 下载免费PDF全文
The solution structure and dynamical properties of the potassium-stabilized, hairpin dimer quadruplex formed by the oligonucleotide d(G3T4G3) have been elucidated by a combination of high-resolution NMR and molecular dynamics simulations. Refinement calculations were carried out both in vacuo, without internally coordinated K+ cations, and in explicit water, with internally coordinated K+ cations. In the latter case, the electrostatic interactions were calculated using the particle mesh Ewald (PME) method. The NMR restraints indicate that the K+ quadruplex has a folding arrangement similar to that formed by the same oligonucleotide in the presence of sodium, but with significant local differences. Unlike the Na+ quadruplex, the thymine loops found in K+ exhibit considerable flexibility, and appear to interconvert between two preferred conformations. Furthermore, the NMR evidence points toward K+-stabilized guanine quartets of slightly larger diameter relative to the Na+-stabilized structure. The characteristics of the quartet stem are greatly affected by the modeling technique employed: caged cations alter the size and symmetry of the quartets, and explicit water molecules form hydration spines within the grooves. These results provide insight into those factors that determine the overall stability of hairpin dimer quadruplexes and the effects of different cations in modulating the relative stability of the dimeric hairpin and linear, four-stranded, quadruplex forms. 相似文献
3.
Using CD and NMR, we determined the structure of an RNA oligomer, r(GGAGGUUUUGGAGG) (R14), comprising two GGAGG segments joined by a UUUU segment. A modified quadruplex structure was observed for r(GGAGGUUUUGGAGG) in solution even in the absence of K(+). An unusually stable dimeric RNA quadruplex architecture formed from two strands of r(GGAGGUUUUGGAGG) at low K(+) concentration is reported here. In each strand of r(GGAGGUUUUGGAGG), two sets of successive turns in the GGAGG segments and turns at both ends of the UUUU loops drive four G-G steps to align in a parallel manner, a core with two stacked G-tetrads being formed. Two adenine bases bind to two edges of one G:G:G:G tetrad through the sheared G:A mismatch augmenting the tetrad into a G:G(:A):G:G(:A) hexad. Thus, one molecule of r(GGAGGUUUUGGAGG) folds into a modified quadruplex comprising a G:G:G:G tetrad, a UUUU double-chain reversal loop and a G:G(:A):G:G(:A) hexad. Two such molecules further associate by stacking through the dimeric hexad-hexad interface with a rotational symmetry. The ribose rings of most nucleotides take S (close to C2'-endo) puckering, which is unusual for an RNA. K(+) can increase the stability of this quadruplex structure; the number of bound K(+) was estimated from the results of the titration experiment. Besides G:G and G:A mismatches, a network of hydrogen bonds including O4'-NH(2) and C-H..O hydrogen bonds, and the extensive base stacking contribute to the high thermodynamic stability of R14. Our results could provide the stereochemical and thermodynamic basis for elucidating the biological role of the GGAGG-containing RNA segments abundantly existing in various RNAs. Relevance to quadruplex-mediated mRNA-FMRP binding and HIV-1 genome RNA dimerization is discussed. 相似文献
4.
Yu. V. Dutikova O. F. Borisova A. K. Shchyolkina J. Lin S. Huang A. A. Shtil D. N. Kaluzhny 《Molecular Biology》2010,44(5):823-831
5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) is a DNA-binding derivative of porphyrins. A comparative study of
the binding of this ligand to biologically significant DNA structures was performed. For this purpose, the interactions of
TMPyP3 with the antiparallel telomeric G-quadruplex d(TTAGGG)4, oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 (not forming a quadruplex structure), double-stranded d(AC)8 · d(GT)8, and single-stranded d(AC)8 and d(GT)8 DNA molecules have been studied. Analysis of absorption isotherms has demonstrated that the binding constants and the number
of binding sites for the complexes TMPyP3: DNA increase in the following order: d(AC)8 < d(GT)8 < d(AC)8 · d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. It has been for the first time demonstrated that the constant for TMPyP3 binding to unfolded dTTAGGGTTAGAG(TTAGGG)2 strand (1.3 × 107 M−1) is approximately threefold higher than for the G-quadruplex d(TTAGGG)4 (4.7 × 106 M−1). Binding of two TMPyP3 molecules to d(TTAGGG)4 decreases the thermostability of G-quadruplex (ΔTm = −8°C). Circular dichroism spectra of the TMPyP3 complexes with d(TTAGGG)4 suggest that the ligand partially unfolds the G-quadruplex structure. Structural destabilization of the telomeric G-quadruplex
by TMPyP3 can explain the relatively low activity of this ligand as a telomerase inhibitor and a low cytotoxicity for cultured
tumor cells. 相似文献
5.
Under physiological concentrations of Na+ and K+, human telomeric DNA can self-associate into G-quadruplexes. On the basis of circular dichroism, gel electrophoresis, gel filtration, and UV-melting experiments, we report here that the double repeat of human telomere (d-TTAGGGTTAGGG; HUM2) forms parallel as well as antiparallel quadruplexes in the presence of K+, whereas Na+ facilitates only the antiparallel form. Here, the gel techniques and CD studies have proved to be complementary in detecting the molecularity and pattern of strand orientation. By correlating the gel and CD experiments, the antiparallel G-quadruplex was identified as a tetrameric species, whereas the parallel G-quadruplex was found to be dimeric. Both structural species were separated through gel filtration, which when run on native polyacrylamide gel electrphoresis (PAGE), confirmed their molecularity. UV-melting profiles also confirm the presence of two biphasic and one monophasic structural species in the presence of K+ and Na+, respectively. Though our observation is consistent with the recent NMR report (Phan, A. T., and Patel, D. J. (2003) J. Am. Chem. Soc. 125, 15021-15027), it seems to differ in terms of the molecularity of the antiparallel quadruplex. A model is proposed for an antiparallel tetrameric quadruplex, showing the possibility of Watson-Crick hydrogen bonds between intervening bases on antiparallel strands. This article expands the known structural motifs of DNA quadruplexes. To the best of our knowledge, four-stranded antiparallel quadruplexes have not been characterized to date. On the basis of the model, we hypothesize a possible mechanism for telomere-telomere association involving their G-overhangs, during certain stages of the cell cycle. The knowledge of peculiar geometries of the G-quadruplexes may also have implications for its specific recognition by ligands. 相似文献
6.
A Matsugami K Ouhashi M Kanagawa H Liu S Kanagawa S Uesugi M Katahira 《Journal of molecular biology》2001,313(2):255-269
The structure of d(GGAGGAGGAGGA) containing four tandem repeats of a GGA triplet sequence has been determined under physiological K(+) conditions. d(GGAGGAGGAGGA) folds into an intramolecular quadruplex composed of a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad. Four G-G segments of d(GGAGGAGGAGGA) are aligned parallel with each other due to six successive turns of the main chain at each of the GGA and GAGG segments. Two quadruplexes form a dimer stabilized through a stacking interaction between the heptads of the two quadruplexes. Comparison of the structure of d(GGAGGAGGAGGA) with the reported structure of d(GGAGGAN) (N=G or T) containing two tandem repeats of the GGA triplet revealed that although the two structures resemble each other to some extent, the extension of the repeats of the GGA triplet leads to distinct structural differences: intramolecular quadruplex for 12-mer versus intermolecular quadruplex for 7-mer; heptad versus hexad in the quadruplex; and three sheared G:A base-pairs versus two sheared G:A base-pairs plus one A:A base-pair per quadruplex. It was also suggested that d(GGAGGAGGAGGA) forms a similar quadruplex under low salt concentration conditions. This is in contrast to the case of d(GGAGGAN) (N=G or T), which forms a duplex under low salt concentration conditions. On the basis of these results, the structure of naturally occurring GGA triplet repeat DNA is discussed. 相似文献
7.
A molecular dynamics study of Ca(2+)-calmodulin: evidence of interdomain coupling and structural collapse on the nanosecond timescale 下载免费PDF全文
A 20-ns molecular dynamics simulation of Ca(2+)-calmodulin (CaM) in explicit solvent is described. Within 5 ns, the extended crystal structure adopts a compact shape similar in dimension to complexes of CaM and target peptides but with a substantially different orientation between the N- and C-terminal domains. Significant interactions are observed between the terminal domains in this compact state, which are mediated through the same regions of CaM that bind to target peptides derived from protein kinases and most other target proteins. The process of compaction is driven by the loss of helical structure in two separate regions between residues 75-79 and 82-86, the latter being driven by unfavorable electrostatic interactions between acidic residues. In the first 5 ns of the simulation, a substantial number of contacts are observed between the first helix of the N-terminal domain and residues 74-77 of the central linker. These contacts are correlated with the closing of the second EF-hand, indicating a mechanism by which they can lower calcium affinity in the N-terminal domain. 相似文献
8.
The influence of one DNA region on the stability of an adjoining region (telestability) was examined. Melting curves of three block DNA's, d(C15A15)·d(T15G15), d(C20A15)·d(T15G20), and d(C20A10)·d(T10G20) were analyzed in terms of the nearest neighbor Ising model. Comparisons of predicted and experimental curves were made in 0.01 M and 0.1 M sodium ion solutions. The nearest neighbor formalism was also employed to analyze block DNA transition in the presence of actinomycin, a G·C specific molecule. The results show that nearest neighbor base-pair interaction cannot predict the melting curves of the block DNA's. Adjustments in theoretical parameters to account for phosphate repulsion assuming a B conformation throughout the DNA's do not alter this conclusion. Changes in the theoretical parameters, which provide good overall agreement, are consistent with a substantial stabilization of the A·T region nearest the G·C block. The melting temperature T A·T for the average A·T pari in d(C20A10)·d(T10G20), with 10 A·T pairs, appears to be 4°C greater than TA·T for d(C15A15)·d(T15G15) and d(C20A15)·d(T15G20), both with 15 A·T pairs. Actinomycin bound to the G·C end effectively stabilizes the A·T end by 9°C. These results indicate a long-range contribution to the interactions governing DNA stability. A possible mechanism for these interactions will be discussed. 相似文献
9.
Using free energy molecular mechanics, we find that the molecular effects of solvent are critical in determining relative stabilities in DNA triple helices or triplexes. The continuum solvent model is unable to differentiate the thermodynamics reflecting the basic solvation differences around the occupied major groove in triplexes. In order to avoid the local minimum problem, which is a major limitation of any modeling study, we started our computations with multiple structures rather than relying on the optimization of a single reference structure. By constructing triplex models with different initial helical twists, helical rises, and sugar-pucker permutations, we explore the potential surface and the structural preference with respect to these variations. We find that in order to accommodate a third strand in triplex formation, the backbone geometry of the B-DNA duplex target has to be adjusted into A-DNA-like form with a deep major groove. This is achieved by concerted adjustment in torsions β, ε, and ζ around the phosphate groups. However, the sugar pucker displays a more rich variation, resulting in conformations not usually associated with the canonical duplex structures. © 1995 John Wiley & Sons, Inc. 相似文献
10.
The structure of the deoxyaligonucleotide d(GGGGCCCC) has been monitored by 1H and 31 P NMR, and by gel electrophoresis. In low-salt solution, this oligonucleotide forms a stable duplex structure. Upon titration with KCl, an equilibrium is established between duplex and quadruplex forms. The quadruplex form is the dominant one at physiological KCl concentrations, despite the fact that fewer hydrogen bonds are formed per strand in the quadruplex than in the duplex. © 1995 John Wiley & Sons, Inc. 相似文献
11.
O. A. Gus’kova P. G. Khalatur A. R. Khokhlov A. A. Chinarev S. V. Tsygankova N. V. Bovin 《Russian Journal of Bioorganic Chemistry》2010,36(5):574-580
An atomistic molecular dynamics (MD) simulation of the adsorption of biantennary oligoglycine [H-Gly4-NH(CH2)5]2 onto a graphite and mica surface is described. The structure of the resultant adsorption layers is analyzed. The secondary
structure motifs of peptide blocks are studied by the STRIDE (structural identification) and DSSP (dictionary of the secondary
structure of proteins) methods. The results of the study confirm the possibility of forming a polyglycine-II (PGII) structure
in the monolayers of biantennary oligoglycines (BAOG) on a graphite surface previously supposed from the data of atomic force
microscopy. 相似文献
12.
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes stabilized by the formation of G.A base pairs. 总被引:4,自引:1,他引:4 下载免费PDF全文
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs. 相似文献
13.
Kazuhiko Kinosita Suguru Kawato Akira Ikegami Satoshi Yoshida Yutaka Orii 《生物化学与生物物理学报:生物膜》1981,647(1):7-17
Molecular motions in membranes composed of purified cytochrome oxidase (EC 1.9.3.1) and synthetic lipid (l-α-dimyristoylphosphatidylcholine or l-α-dioleoylphosphatidylcholine) at various ratios were investigated with a lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Nanosecond fluorescence depolarization kinetics of the probe showed that the rod-shaped probe molecules perform a fast wobbling motion (restricted rotation) in all membranes studied, presumably reflecting the motion of lipid acyl chains. At temperatures where the pure lipid was in the liquid-crystalline phase, presence of cytochrome oxidase reduced the angular range of the wobbling motion, whereas its rate; the wobbling diffusion constant, was unaffected. On the other hand, incorporation of the protein into lipid in the gel phase resulted in the increase in the wobbling diffusion constant while the range of the wobbling motion remained the same. A time-dependent view of lipid dynamics that accounts for the above findings, as well as the results of recent electron spin resonance and nuclear spin resonance studies of protein-lipid interactions, is proposed. 相似文献
14.
Guanine quadruplex (G-quadruplex) structures are formed by guanine-rich oligonucleotides. Because of their in vivo and in vitro importance, numerous studies have been demonstrated that the structure and stability of the G-quadruplex are dependent on the sequence of oligonucleotide and environmental conditions such as existing cations. Previously, we quantitatively investigated the divalent cation effects on the antiparallel G-quadruplex of d(G4T4G4), and found that Ca2+ induces a structural transition from the antiparallel to parallel G-quadruplex, and finally G-wire formation. In the present study, we report in detail the kinetic and thermodynamic analyses of the structural transition induced by Ca2+ using stopped-flow apparatus, circular dichroism, size-exclusion chromatography (SEC) and atomic force microscopy. The quantitative parameters showed that at least two Ca2+ ions were required for the transition. The kinetic parameters also indicated that d(G4T4G4) underwent the transition through multiple steps involving the Ca2+ binding, isomerization and oligomerization of d(G4T4G4). The parallel-stranded G-wire structure of d(G4T4G4), which is a well controlled alignment of numerous DNA strands with G-quartets, as the final product induced by Ca2+, was observed using SEC and atomic force microscopy. These results provide insight into the mechanism of the structural transition and G-wire formation and are useful for constructing a nanomaterial regulated by Ca2+. 相似文献
15.
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D(3) (hD(3)) receptor has been recently solved. Based on the hD(3) receptor crystal structure we generated dopamine D(2) and D(3) receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD(3) and hD(2L) receptors was differentiated by means of MD simulations and D(3) selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental K(i) was obtained for hD(3) and hD(2L) receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. 相似文献
16.
A molecular dynamics study of the effect of G.T mispairs on the conformation of DNA in solution 总被引:2,自引:0,他引:2
The effect of G.T mispair incorporation into a double-helical environment was examined by molecular dynamics simulation. The 60-ps simulations performed on the two hexanucleotide duplexes d (G3C3)2 and d(G3TC2)2 included 10 Na+ counterions and first hydration shell waters. The resulting backbone torsional angle trajectories were analyzed to select time spans representative of conformational domains. The average backbone angles and helical parameters of the last time span for both duplexes are reported. During the simulation the hexamers retained B-type DNA structures that differed from typical A- or B-DNA forms. The overall helical structures for the two duplexes are vary similar. The presence of G.T mispairs did not alter the overall helical structure of the oligonucleotide duplex. Large propeller twist and buckle angles were obtained for both duplexes. The purine/pyrimidine crossover step showed a large decrease in propeller twist in the normal duplex but not in the mismatch duplex. Upon the formation of wobble mispairs in the mismatched duplex, the guanines moved into the minor groove and the thymines moved into the major groove. This helped prevent purine/purine clash and created a deformation in the relative orientation of the glycosidic bonds. It also exposed the free O4 of the thymines in the major groove and N2 of the guanines in the minor groove to interactions with solvent and counterions. These factors seemed to contribute to the apparently higher rigidity of the mismatched duplex during the simulation. 相似文献
17.
The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). 总被引:1,自引:2,他引:1 下载免费PDF全文
The DNA sequence d(G(4)T(4)G(4)) [Oxy-1.5] consists of 1.5 units of the repeat in telomeres of Oxytricha nova and has been shown by NMR and X-ray crystallographic analysis to form a dimeric quadruplex structure with four guanine-quartets. However, the structure reported in the X-ray study has a fundamentally different conformation and folding topology compared to the solution structure. In order to elucidate the possible role of different counterions in this discrepancy and to investigate the conformational effects and dynamics of ion binding to G-quadruplex DNA, we compare results from further experiments using a variety of counterions, namely K(+), Na(+)and NH(4)(+). A detailed structure determination of Oxy-1.5 in solution in the presence of K(+)shows the same folding topology as previously reported with the same molecule in the presence of Na(+). Both conformations are symmetric dimeric quadruplexes with T(4)loops which span the diagonal of the end quartets. The stack of quartets shows only small differences in the presence of K(+)versus Na(+)counterions, but the T(4)loops adopt notably distinguishable conformations. Dynamic NMR analysis of the spectra of Oxy-1.5 in mixed Na(+)/K(+)solution reveals that there are at least three K(+)binding sites. Additional experiments in the presence of NH(4)(+)reveal the same topology and loop conformation as in the K(+)form and allow the direct localization of three central ions in the stack of quartets and further show that there are no specific NH(4)(+)binding sites in the T(4)loop. The location of bound NH(4)(+)with respect to the expected coordination sites for Na(+)binding provides a rationale for the difference observed for the structure of the T(4)loop in the Na(+)form, with respect to that observed for the K(+)and NH(4)(+)forms. 相似文献
18.
The pore-lining M2 helix of the nicotinic acetylcholine receptor exhibits a pronounced kink when the corresponding ion channel is in a closed conformation [N. Unwin (1993) Journal of Molecular Biology, Vol. 229, pp. 1101–1124]. We have performed molecular dynamics simulations of isolated 22-residue M2 helices in order to identify a possible molecular origin of this kink. In order to sample a wide range of conformational space, a simulated annealing protocol was used to generate five initial M2 helix structures, each of which was subsequently used as the basis of 300 ps MD simulations. Two helix sequences (M2α and M2δ) were studied in this manner, resulting in a total often 300 ps trajectories. Kinked helices present in the trajectories were identified and energy minimized to yield a total of five different stable kinked structures. For comparison, a similar molecular dynamics simulation of a Leu23 helix yielded no stable kinked structures. In four of the five kinked helices, the kink was stabilized by H bonds between the helix backbone and polar side-chain atoms. Comparison with data from the literature on site-directed mutagenesis of M2 residues suggests that such polar side-chain to main-chain H bonds may also contribute to kinking of M2 helices in the intact channel protein. © 1994 John Wiley & Sons, Inc. 相似文献
19.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc. 相似文献
20.
Jens Landström 《Carbohydrate research》2010,345(2):330-333
An atomistic all-atom molecular dynamics simulation of the trisaccharide β-d-ManpNAc-(1→4)[α-d-Glcp-(1→3)]-α-l-Rhap-OMe with explicit solvent molecules has been carried out. The trisaccharide represents a model for the branching region of the O-chain polysaccharide of a strain from Aeromonas salmonicida. The extensive MD simulations having a 1-μs duration revealed a conformational dynamics process on the nanosecond time scale, that is, a ‘time window’ not extensively investigated for carbohydrates to date. The results obtained from the MD simulation underscore the predictive power of molecular simulations in studies of biomolecular systems and also explain an unusual nuclear Overhauser effect originating from conformational exchange. 相似文献