首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preincubation of rat brain homogenates with acetylcholine (ACh) in concentrations of 10(-3)-10(-5) M for 60 minutes produces an essential increment (15-30%) in activity of microsomal Na, K-ATPase. Analogous effect was exerted by the acetylcholinesterase inhibitor eserine (10(-5)-10(-6) M). Acetylcholine has no effect in the presence of actinomycin D. Dialysis of microsomes isolated from the homogenate incubated with ACh leads to a decrease in the enzyme activity and release to the dialysate of low-molecular factor activating Na, K-ATPase of intact microsomes. The latter fact evidences the ACh-induced synthesis of activating factor and inhibition of Na, K-ATPase synthesis. After the animals are administered eserine (0.2-0.4 mg/kg), isolated microsomes show a reduced level of Na, K-ATPase (by 10-15%). Dialysis of microsomes leads to an appreciable elevation (by approximately 40%) of the enzyme activity and release into the dialysate of the inhibitory factor. The differences in the effects of eserine in vivo and in vitro suggest that during the impairment of brain integrity certain effects are excluded from the processes of the control over Na, K-ATPase activity. One of these may involve the impairment of intercellular interactions, for example, the disappearance of the effect on cholinoceptive cells of internuncial neurons that release inhibitory neurotransmitters (catecholamines).  相似文献   

2.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

3.
N R Elaev 《Tsitologiia》1978,20(8):970-972
Acetylcholine (10(-6)--10(-3) M) added to the rat brain homogenate increased that activity of microsomal Na, K-ATPase and (14C)-amino acid incorporation in microsomal proteins. Actinomicin D (5.10(-5) M) eliminated the effect of acetylcholine. It is concluded that acetylcholine induced the synthesis of either Na, K-ATPase itself or some other proteins involved in the enzyme activity regulation.  相似文献   

4.
Na, K-ATPase and Mg-ATPase activities were measured in the synaptosomes of the temporal auditory projection area and the frontal association area. Moreover, the effects of carbacholine and serotonin on those activities were investigated. Na, K-ATPase activity in the synaptosomes of the association area was shown to be reliably higher that in the synaptosomes of the projection area (11.02 +/- 0.45 vs 8.40 +/- 0.55 microM Pi/mg of protein hr; P less than 0.05). Mg-ATPase activity was higher in the second case as compared to the first one (11.40 +/- 0.38 vs 9.04 +/- 0.35; p less than 0.05). Carbacholine and serotonin (10(-8)-10(-3) M) were found to induce equal inhibition of Na, K-ATPase activity in the synaptosomes of both cortices (1 max = 25-30%, 1C50 = 0.2-0.3 microM) which is blocked respectively with atropine (10(-6) M) and methysergide (10(-6) M) and enhanced in presence of GTP (5.10(-5) M). The enzyme activity is also inhibited by the non-hydrolysable guanine nucleotide, GTP gamma S (10(-8)-10(-4) M), in the absence of the antagonists (1 max = 35-40%, 1 C50 = 0.02 microM). In the methysergide-containing medium serotonin exerts a dose-dependent stimulatory effect on Na, K-ATPase which is more pronounced in the synaptosomes of the association area (A max = 25%, A C50 = 0.05 microM). Mg-ATPase activity of membrane preparations is liable to be stimulated by both serotonin and carbacholine, stimulation being more pronounced in the synaptosomes of the association cortex as well (A max = 35%, A C50 = 0.2-0.3 microM). This effect is insensitive either to the antagonists of the corresponding receptors or to GTP. GTP gamma S does not cause alterations in the enzymatic activity. Na, K-ATPase is suggested to be coupled to muscarine and serotonin receptors in the synaptic membranes of both projection and association cortical areas via a GTP-binding protein. At the same time, the agonists of receptors mentioned above are presumably also capable to effect Mg-ATPase activity by the receptor-independent way.  相似文献   

5.
The effects of various interventions on the frequency-dependent increases in the contractility of the papillary muscles of monkeys were investigated. Ouabain (10(-6)M) and KCl-free Krebs-Ringer solution, which are known to inhibit membrane Na+,K+-ATPase (EC 3.6.1.3), abolished the frequency-dependent increases in the contractility of the papillary muscles. Epinephrine (4.5 X 10(8)M) or quinidine (1.3 X 10(-5)M), which are known not to inhibit the membrane Na+,K-ATPase at these concentrations, did not alter the frequency-dependent increases in the contractility. These results indicate that the frequency-dependent increases in the contractility might be mediated through an inhibition of the sarcolemmal Na+,K+-ATPase.  相似文献   

6.
Catecholamines and related compounds, such as dopamine, 5- or 6-hydroxydopamine, N-methyldopamine, tyramine, octopamine, norepinephrine and epinephrine, inhibit human liver dihydropteridine reductase (NADH:6,7-dihydropteridine oxidoreductase, EC 1.6.99.10) noncompetitively with Ki values ranging from 7.0 X 10(-6) - 1.9 X 10(-4)M (I50 values = 2.0 X 10(-5) - 2.0 X 10(-4)M). The tyrosine analogs alpha-methyltyrosine and 3-iodotyrosine are weak inhibitors of this enzyme (I50 greater than 10(-3)M). The inhibitory effect of catecholamines is slightly decreased by O-methylation of one hydroxyl group, but is essentially abolished by total methylation. The inhibitory strength of the catecholamines and related compounds tested against this enzyme can be arranged in the following order: dopamine, 6-hydroxydopamine, 5-hydroxydopamine, N-methyldopamine greater than tyramine, 3-O-methyldopamine, 4-O-methyldopamine much greater than epinephrine, 3-O-methylepinephrine, norepinephrine, octopamine less than tyrosine much less than alpha-methyltyrosine, 3-iodotyrosine much less than homoveratrylamine. These results suggest that dopamine, norepinephrine and epinephrine may serve as physiological regulators of mammalian dihydropteridine reductase.  相似文献   

7.
Norepinephrine-stimulated prostacyclin synthesis was studied in rat aortic rings by measuring 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay. Norepinephrine (10(-6) M) results in a 10- to 20-fold increase in 6-keto-PGF1 alpha synthesis by rat aortic rings (54 +/- 11 to 437 +/- 260 pg X mg wet weight-1 X 20 min-1). The maximal stimulation of 6-keto-PGF1 alpha synthesis was observed with a norepinephrine concentration of 10(-5) M at a mean effective concentration (EC50) of 9.5 +/- 3.2 X 10(-7) M which is similar to the contractile response (Emax = 10(-5) M, EC50 = 6.5 +/- 1.8 X 10(-7) M). Potassium chloride (30 mM), although causing a similar maximal contractile response as 10(-6) M norepinephrine, did not increase 6-keto-PGF1 alpha synthesis. Norepinephrine-stimulated 6-keto-PGF1 alpha synthesis was dependent upon extracellular calcium. Norepinephrine stimulation in Ca2+-free medium did not lead to a significant increase in 6-keto-PGF1 alpha synthesis. However, on the introduction of Ca2+, 6-keto-PGF1 alpha synthesis was restored to its initial level. Phentolamine (10(-6) M) (an alpha-adrenergic antagonist) and trifluroperazine (2.5 X 10(-4) M) (a calmodulin inhibitor) completely inhibited norepinephrine-stimulated 6-keto-PGF1 alpha synthesis, whereas verapamil 3 X 10(-6) M (a calcium channel blocking drug) only partially inhibited synthesis (control, 74 +/- 12; norepinephrine, 437 +/- 260; norepinephrine + verapamil, 123 +/- 8 pg X mg wet weight-1 X 20 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Exposure of ARL 15 cells to medium containing reduced concentrations of K+ (0.65 mM) elicited a 50-100% increase in Na,K-ATPase activity. The inhibition by ouabain of both the basal and the induced enzyme conformed to a single-site model (KI = 1 x 10(-4) M). The low K+-induced increment in Na,K-ATPase activity was accompanied by an equivalent increase in the abundance of Na,K-pump sites estimated by ouabain-stabilized ("back-door") phosphorylation, such that the calculated catalytic turnover number of approximately 8000/min was minimally changed. Comparison of the dependence of ouabain-inhibitable K+ uptake on intracellular Na+ and on extracellular K+ concentrations in control and low K+-treated cells revealed no change in the respective half-maximal stimulatory concentrations for these cations, whereas the maximal rate of active K+ uptake in cells exposed to low external K+ increased by nearly 100%. The derived Hill coefficients for active K+ transport rate were also unchanged by the low K+ treatment (i.e. approximately 1.4 for extracellular K+ and 2.6 for intracellular Na+). Na,K-ATPase activity of basal and low K+-induced cells calculated from the measured maximal Na,K transport rate closely approximated the Na,K-ATPase activity measured enzymatically in unfractionated cell lysates under Vmax conditions, suggesting that all or most of the Na,K-ATPase enzymatic units present in both basal and stimulated states are functionally active. Northern blot analysis of RNA isolated from control cells indicated the presence of the Na,K-ATPase alpha-I isoform of the enzyme which increased by nearly 200% following incubation of the cells in low-K+ medium. By contrast, the alpha-II and alpha-III mRNAs were undetectable in either the basal or low K+-stimulated state. These results indicate that the Na,K-ATPase induced by incubation of ARL 15 cells in low-K+ medium is kinetically and functionally indistinguishable from the basal enzyme, and that only the alpha-I isoform is expressed under control and low-K+ conditions.  相似文献   

9.
Na, K-ATPase activity of the rat and guinea-pig myocardial sarcolemma and its sensitivity to digoxin (DG) and carbamylcholine (CCh) were investigated during experimental ischemia. Ischemia was induced by the incubation of hearts in the air at 37 degrees C. This 15-, 30- and 45-min treatment led to a decrease in enzymatic activity which was similar in both animal species. Dose-related dependence of DG effect (10(-8)-10(-2) M) on sarcolemmal Na, K-ATPase activity of guinea-pig ischemic hearts did not differ from the control, whereas the rat enzyme sensitivity to glycosides rose with the progress of ischemia. CCh (10(-7)-10(-3) M) produced an inhibition of Na, K-ATPase activity which had reached 40% both in the rat and guinea-pig myocardial preparations. This effect was blocked by atropine (10(-6) M). The magnitude of enzyme responses to CCh declined depending on the duration of ischemia, with it being greater in guinea-pig sarcolemma than in rat membrane. The increased sensitivity of the rat Na, K-ATPase to CCh was also observed.  相似文献   

10.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 X 10(-8) M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5 X 10(-8) M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+. Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+. Preincubation of enzyme with 15 microM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 X 10(-7) M propranolol and 5 X 10(-8) M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 X 10(-5) M coenzyme A in combination with 5 X 10(-8) M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

11.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

12.
Using a sensitive potentiometric method the effect of isoproterenol upon the activity of Na, K-ATPase in cardiomyocytes has been studied. The activity of the enzyme in rat sarcolemma at isoproterenol-induced myocarditis decreases by 42%. A direct action of isoproterenol on the Na, K-ATPase activity in sarcolemma in vitro has been investigated. In the concentration range 10(-9)-10(-3) M (from receptor-binding up to cardiotoxic) a gradual decrease of the activity reaching the complete inhibition at 10(-3) M is revealed. Antagonist of beta-adrenoreceptors propranolol in concentrations required for displacing the agonist (10(-9) M) provides for the recovery of the Na, K-ATPase activity up to 76% of its normal activity. This action transforms into nonspecific inhibition at rising concentration of the antagonist. Possible mechanisms of the beta-adrenergic regulation effect in cardiomyocytes on Na, K-ATPase of the sarcolemma are discussed.  相似文献   

13.
The study was focused to the influence of higher intake of cholesterol on properties of the renal Na,K-ATPase, a key system in maintaining the homeostasis of sodium in the organism. Feeding for 4 weeks with cholesterol-enriched food for rats afflicted with hereditary hypertriglyceridemia by itself enhanced the activity of Na,K-ATPase, probably as a consequence of higher number of active enzyme molecules as suggested by 32 % increase of V (max) value. This may be hypothesized as a reason for the increased retention of sodium. Three-week-lasting treatment of animals kept on high cholesterol diet with antioxidant SMe1EC2 in a dose of 10 mg kg(-1) day(-1) normalized the function of renal Na,K-ATPase to the level comparable in hypertriglyceridemic rats fed with the standard diet. Therefore, our results suggest that the antioxidant SMe1EC2 in the applied dose seems to be effective in the attenuation of cholesterol-induced retention of sodium. Treatment for 3 weeks with Fenofibrate in a dose of 100 mg kg(-1) day(-1) reversed the function of renal Na,K-ATPase only slightly.  相似文献   

14.
In two fractions obtained from the bovine A. coronaria adenylate cyclase activity was identified and characterized. The adenylate cyclase activity of the 75,000 X g sediment shows a pH optimum at 7.4. The temperature dependence of this adenylate cyclase activity is linear when represented in the Arrhenius plot, and an Arrhenius activation energy of 13.2 kcal Mol-1 can be calculated for the enzyme reaction. The Km-value of the enzyme to ATP is 6 +/- 0.6 - 10(-4) M. The adenylate cyclase activity of the 75,000 X g sediment can be stimulated by NaF. 5'AMP and adenosine inhibit the adenylate cyclase activity of the 75,000 X g sediment. With regard to the enzyme activity, Mn++ and Co++ replace Mg++, but not Ca++. The monovalentcations Na+ and K+ do not influence the adenylate cyclase activity. In a particulate fraction containing plasma membranes, adenylate cyclase activity was also identified. This adenylate cyclase activity can be stimulated by catecholamines, noradrenaline, and isoproterenol. This stimulation can, however, only be proved for the enzyme in the coronaries of 9-week-old and 2-year-old animals. The adenylate cyclase activity from the coronaries of adult animals is not affected by catecholamines. These findings are discussed with regard to hypertension frequently found in adult animals.  相似文献   

15.
Norepinephrine stimulates Na, K-ATPase from rat brain homogenates at concentrations of 10(-4)--10(-5) and 10(-7)--10(-8) M. A low concentration maximum is observed after 48 hrs of incubation at -20 degrees C and is not changed by the addition of alpha-tocopherol, glycerol and MAO inhibitor ipraside. The maximum observed at the mediator concentration equal to 10(-4)--10(-5) M is eliminated after treatment with EGTA. At all concentrations of norepinephrine the enzyme stimulation is removed by the alpha-adrenoblocker phentolamine. The activated enzyme reveals lower sensitivity to Ca2+ induced inhibition. The role of Ca2+ and conformational state of the membranes in the realization of the remote effect on the adrenoreceptor-Na, K-ATPase system is discussed.  相似文献   

16.
Activation of rat cerebellum granule cells by N-methyl-D-aspartate (NMDA, 10(-4)-10(-3) M) results in progressive increase in reactive oxygen species (ROS) and suppression of the ouabain-sensitive part of Na/K-ATPase activity. When Na/K-ATPase was inhibited by high ouabain concentrations (10(-5)-5 x 10(-4) M), an increase in stationary ROS level in neuronal cells was noted, this effect being attenuated by NMDA antagonists, MK-801 and D-AP5. It is concluded that in cerebellum neurons, ouabain-resistant Na/K-ATPase is responsible for suppression of intracellular level of ROS, which, in turn, inhibit ouabain-sensitive Na/K-ATPase.  相似文献   

17.
The effects of two catecholamines, epinephrine (EP) and norepinephrine (NE), on carbohydrate metabolism were studied by incubating chinook salmon liver in vitro. Basal release of glucose over the course of a 5-h incubation was 7.93 +/- 1.70 mumol/g dry weight. Both EP and NE (2 X 10(-7) M) stimulated glucose release rapidly during the first hour. After 5 h, EP and NE significantly increased glucose release over basal levels to 43.55 +/- 9.01 and 32.75 +/- 6.17 mumol/g dry weight, respectively. Epinephrine- and NE-stimulated glucose release was dose dependent, with a minimum effective dose of 10(-9) M. ED50 for both agents was approximately 2 X 10(-7) M; maximal stimulation occurred at 10(-5) M. No difference in potency between the two catecholamines was found. The effects of adrenergic agonists and antagonists were also studied. Alpha-agonists, methoxamine and phenylephrine, had no effect on glucose release. Isoproterenol, a beta-agonist, stimulated glucose release in a manner similar to EP. The beta-antagonist, propranolol, inhibited both catecholamine- and isoproterenol-stimulated glucose release. Alpha-antagonists (phentolamine, prazosin, and yohimbine) had no effect on either catecholamine- or isoproterenol-stimulated glucose release. Epinephrine and NE stimulate glycogen phosphorylase activity; propranolol inhibits catecholamine-stimulated phosphorylase activity. These results indicate that catecholamines stimulate glucose mobilization in salmon liver by promoting glycogenolysis mediated through beta-adrenergic receptors.  相似文献   

18.
The relationship between electrophysiological changes and Na, K-ATPase activity of neuronal membranes in sodium penicillin-induced epileptic foci was studied. Na,K-ATPase activity is inhibited both in the primary focus and in homotopic contralateral area during latent period and in the stage of forming epileptic activity. In the stage of marked convulsive activity Na, K-ATPase is inhibited only in the primary focus. It is shown that penicillin at a concentration range of 2 x 10(-6)--2 x 10(-3) M does not influence Na,K-ATPase activity of crude synaptosomes of the rat brain cortex. It is suggested that Na,K-ATPase inactivation may serve as a pathogenetic factor in the development of convulsive process.  相似文献   

19.
B A Barron  T D Hexum 《Life sciences》1986,38(10):935-940
Retrograde perfusion was used to investigate the effect of an opiate agonist and an opiate antagonist on the release of catecholamines and [Met5]-enkephalin immunoreactive material (ME-IRM) from bovine adrenal glands. Etorphine (5 X 10(-7) M) inhibited the spontaneous outflow of ME-IRM by approximately 10 percent but had no significant effect on the spontaneous catecholamine release. Acetylcholine (ACh, 5 X 10(-5) M) or 1,1-dimethyl-4-phenylpiperazinium (DMPP, 5 X 10(-5) M) stimulated release of ME-IRM and catecholamines was significantly decreased by the addition of etorphine. Diprenorphine (5 X 10(-7) M) had no significant effect on the spontaneous outflow of either ME-IRM or catecholamines. Diprenorphine reversed the inhibition of the DMPP-stimulated release caused by etorphine. After submaximal stimulation of the gland with DMPP (1 X 10(-5) M), a further stimulation of release of ME-IRM and catecholamines was observed after the addition of diprenorphine alone, i.e., in the absence of etorphine. These results provide further evidence supporting the contention that opiates modulate the secretion of catecholamines and ME-IRM from the adrenal gland.  相似文献   

20.
Cyclic AMP (cAMP) stimulates the transport of Na(+) and Na,K-ATPase activity in the renal cortical collecting duct (CCD). The aim of this study was to investigate the mechanism whereby cAMP stimulates the Na,K-ATPase activity in microdissected rat CCDs and cultured mouse mpkCCD(c14) collecting duct cells. db-cAMP (10(-3) M) stimulated by 2-fold the activity of Na,K-ATPase from rat CCDs as well as the ouabain-sensitive component of (86)Rb(+) uptake by rat CCDs (1.7-fold) and cultured mouse CCD cells (1.5-fold). Pretreatment of rat CCDs with saponin increased the total Na,K-ATPase activity without further stimulation by db-cAMP. Western blotting performed after a biotinylation procedure revealed that db-cAMP increased the amount of Na,K-ATPase at the cell surface in both intact rat CCDs (1.7-fold) and cultured cells (1.3-fold), and that this increase was not related to changes in Na,K-ATPase internalization. Brefeldin A and low temperature (20 degrees C) prevented both the db-cAMP-dependent increase in cell surface expression and activity of Na,K-ATPase in both intact rat CCDs and cultured cells. Pretreatment with the intracellular Ca(2+) chelator bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid also blunted the increment in cell surface expression and activity of Na,K-ATPase caused by db-cAMP. In conclusion, these results strongly suggest that the cAMP-dependent stimulation of Na,K-ATPase activity in CCD results from the translocation of active pump units from an intracellular compartment to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号