首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-molecular-weight carboxylic acids have many properties common to small molecule drugs. The transport of these acids across cell membranes has been widely studied, but these studies have produced wildly varying permeability values. Recent reports have even claimed that the transport behavior of these drugs is contrary to the rule of thumb called Overton's rule, which holds that more lipophilic molecules transport across lipid membranes more quickly. We used confocal microscopy to image the transport of carboxylic acids with different lipophilicities into a giant unilamellar lipid vesicle (GUV). Fluorescein-dextran, which acts as a pH-sensitive dye, was encapsulated in the GUV to trace the transport of acid. The GUV was immobilized on the surface of a microfluidic channel by biotin-avidin binding. This microchannel allows the rapid and uniform exchange of the solution surrounding the GUV. Using a spinning-disk confocal microscope, the entire concentration field is captured in a short (<100 ms) exposure. Results show that more lipophilic acids cross the bilayer more quickly. A finite difference model was developed to simulate the experimental process and derive permeabilities. The permeabilities change with the same trend as literature oil-water partition coefficients, demonstrating that Overton's rule applies to this class of molecules.  相似文献   

2.
Water and nonelectrolyte permeability of lipid bilayer membranes   总被引:17,自引:9,他引:8       下载免费PDF全文
Both the permeability coefficients (Pd's) through lipid bilayer membranes of varying composition (lecithin [L], lecithin:cholesterol [LC], and spingomyelin:cholesterol [SC]) and the n-hexadecane:water partition coefficients (Knc's) of H2O and seven nonelectrolytes (1,6 hexanediol, 1,4 butanediol, n-butyramide, isobutyramide, acetamide, formamide, and urea) were measured. For a given membrane compositiin, Pd/DKnc (where D is the diffusion constant in water) is the same for most of the molecules tested. There is no extraordinary dependence of Pd on molecular weight; thus, given Pd(acetamide), Pd(1,6 hexanediol) is correctly predicted from the Knc and D values for the two molecules. The major exceptions are H2O, whose value of Pd/DKnc is about 10-fold larger, and urea, whose value is about 5-fold smaller than the general average. In a "tight" membrane such as SC, Pd(n- butyramide)/Pd(isobutyramide)=2.5; thus this bilayer manifests the same sort of discrimination between branched and straight chain molecules as occurs in many plasma membranes. Although the absolute values of the Pd's change by more than a factor of 100 in going from the tightest membrane (SC) to the loosest (L), the relative values remain approximately constant. The general conclusion of this study is that H2O and nonelectrolytes cross lipid bilayer membranes by a solubility- diffusion mechanism, and that the bilayer interior is much more like an oil (a la Overton) than a rubber-like polymer (a la Lieb and Stein).  相似文献   

3.
4.
Two experimental techniques have been utilized to explore the barrier properties of lecithin/decane bilayer membranes with the aim of determining the contributions of various domains within the bilayer to the overall barrier. The thickness of lecithin/decane bilayers was systematically varied by modulating the chemical potential of decane in the annulus surrounding the bilayer using different mole fractions of squalene in decane. The dependence of permeability of a model permeant (acetamide) on the thickness of the solvent-filled region of the bilayer was assessed in these bilayers to determine the contribution of this region to the overall barrier. The flux of acetamide was found to vary linearly with bilayer area with Pm = (2.9 +/- 0.3) x 10(-4) cm s-1, after correcting for diffusion through unstirred water layers. The ratio between the overall membrane permeability coefficient and that calculated for diffusion through the hydrocarbon core in membranes having maximum thickness was 0.24, suggesting that the solvent domain contributes only slightly to the overall barrier properties. Consistent with these results, the permeability of acetamide was found to be independent of bilayer thickness. The relative contributions of the bilayer interface and ordered hydrocarbon regions to the transport barrier may be evaluated qualitatively by exploring the effective chemical nature of the barrier microenvironment. This may be probed by comparing functional group contributions to transport with those obtained for partitioning between water and various model bulk solvents ranging in polarity or hydrogen-bonding potential. A novel approach is described for obtaining group contributions to transport using ionizable permeants and pH adjustment. Using this approach, bilayer permeability coefficients of p-toluic acid and p-hydroxymethyl benzoic acid were determined to be 1.1 +/- 0.2 cm s-1 and (1.6 +/- 0.4) x 10(-3) cm s-1, respectively. From these values, the -OH group contribution to bilayer transport [delta(delta G0-OH)] was found to be 3.9 kcal/mol. This result suggests that the barrier region of the bilayer does not resemble the hydrogen-bonding environment found in octanol, but is somewhat less selective (more polar) than a hydrocarbon solvent.  相似文献   

5.
Recently measured water permeability through bilayers of different lipids is most strongly correlated with the area per lipid A rather than with other structural quantities such as the thickness. This paper presents a simple three-layer theory that incorporates the area dependence in a physically realistic way and also includes the thickness as a secondary modulating parameter. The theory also includes the well-known strong correlation of permeability upon the partition coefficients of general solutes in hydrocarbon environments (Overton's rule). Two mathematical treatments of the theory are given; one model uses discrete chemical kinetics and one model uses the Nernst-Planck continuum equation. The theory is fit to the recent experiments on water permeability in the accompanying paper.  相似文献   

6.
Nonelectrolyte diffusion across lipid bilayer systems   总被引:6,自引:6,他引:0       下载免费PDF全文
The permeability coefficients of a homologous series of amides from formamide through valeramide have been measured in spherical bilayers prepared by the method described by Jung. They do not depend directly on the water:ether partition coefficient which increases regularly with chain length. Instead there is a minimum at acetamide. This has been ascribed to the effect of steric hindrance on diffusion within the bilayer which increases with solute molar volume. This factor is of the same magnitude, though opposite in sign to the effect of lipid solubility, thus accounting for the minimum. The resistance to passage across the interface has been compared to the resistance to diffusion within the membrane. As the solute chain length increases the interface becomes more important, until for valeramide it comprises about 90% of the total resistance. Interface resistance is also important in urea permeation, causing urea to permeate much more slowly than an amide of comparable size, after allowance is made for the difference in the water:ether partition coefficient. Amide permeation coefficients have been compared with relative liposome permeation data measured by the rate of liposome swelling. The ratios of the two measures of permeation vary between 3 and 16 for the homologous amides. The apparent enthalpy of liposome permeation has been measured and found to be in the neighborhood of 12 kcal mol-1 essentially independent of chain length. Comparison of the bilayer permeability coefficients with those of red cells shows that red cell permeation by the lipophilic solutes resembles that of the bilayers, whereas permeation by the hydrophilic solutes differs significantly.  相似文献   

7.
Opposing views exist as to how unesterified fatty acids (FA) enter and leave cells. It is commonly believed that for short- and medium-chain FA free diffusion suffices whereas it is questioned whether proteins are required to facilitate transport of long-chain fatty acid (LCFA). Furthermore, it is unclear whether these proteins facilitate binding to the plasma membrane, trans-membrane movement, dissociation into the cytosol and/or transport in the cytosol. In this mini-review we approach the controversy from a different point of view by focusing on the membrane permeability constant (P) of FA with different chain length. We compare experimentally derived values of the P of short and medium-chain FA with values of apparent permeability coefficients for LCFA calculated from their dissociation rate constant (k(off)), flip-flop rate constant (k(flip)) and partition coefficient (Kp) in phospholipid bilayers. It was found that Overton's rule is valid as long as k(flip)相似文献   

8.
A membrane bilayer pathway model has been proposed for the interaction of dihydropyridine (DHP) calcium channel antagonists with receptors in cardiac sarcolemma (Rhodes, D.G., J.G. Sarmiento, and L.G. Herbette. 1985. Mol. Pharmacol. 27:612-623) involving drug partition into the bilayer with subsequent receptor binding mediated (though probably not rate-limited) by diffusion within the bilayer. Recently, we have characterized the partition step, demonstrating that DHPs reside, on a time-average basis, near the bilayer hydrocarbon core/water interface. Drug distribution about this interface may define a plane of local concentration for lateral diffusion within the membrane. The studies presented herein examine the diffusional dynamics of an active rhodamine-labeled DHP and a fluorescent phospholipid analogue (DiIC16) in pure cardiac sarcolemmal lipid multibilayer preparations as a function of bilayer hydration. At maximal bilayer hydration, the drug diffuses over macroscopic distances within the bilayer at a rate identical to that of DiI (D = 3.8 X 10(-8) cm2/s), demonstrating the overall feasibility of the membrane diffusion model. The diffusion coefficients for both drug and lipid decreased substantially as the bilayers were dehydrated. While identical at maximal hydration, drug diffusion was significantly slower than that of DiIC16 in partially dehydrated bilayers, probably reflecting differences in mass distribution of these probes in the bilayer.  相似文献   

9.
The temperature dependence of the coefficient of water self-diffusion across plane-parallel multib-ilayers of dioleoylphosphatidylcholine oriented on a glass support was studied in the 20–60°C range by pulsed field gradient NMR. The coefficient for transbilayer diffusion of water proved almost four orders of magnitude smaller than for bulk water, and 10 times smaller than that for lateral diffusion of lipid under the same conditions. The temperature dependence obeyed the Arrhenius law with apparent activation energy of 41 kJ/mol, much higher than that for bulk water (18 kJ/mol). The experimental data were analyzed using the “dissolution-diffusion” model, by simulating water passage through membrane channels, and by examining water exchange in states with different modes of translational mobility, including pore channels and bilayer defects. Each approach could take into account the role of bilayer permeability and assess the apparent activation energy for water diffusion in the hydrophobic part of the bilayer, which proved close to the value for bulk water. Estimates were obtained for water diffusion coefficients in the system, coefficients of bilayer permeability for water, and the influence of bilayer defects on the lateral and transverse diffusion coefficients.  相似文献   

10.
The temperature dependence of the coefficient of water self-diffusion through plane-parallel lipid multilayers of the phospholipid dioleoylphosphatidylcholine oriented on a glass support has been studied in the temperature range of 20-60 degrees C by the method of NMR with magnetic field pulse gradient. The values of the coefficients of transbilayer water diffusion are by four orders of magnitude less than for bulky water and ten times less than the coefficients of lateral diffusion of the lipid under the same conditions. The temperature dependence of the coefficient of water diffusion is described by the Arrhenius law with an apparent activation energy of about 41 kJ/mol, which far exceeds the activation energy for the diffusion of bulky water (18 kJ/mol). The experimental data were analyzed using a "dissolving-diffusion" model, by simulating the passage of water through membrane channels, and by analyzing the exchange of water molecules in states with different modes of translation mobility, including pore channels and bilayer "defects". Each of the approaches used made it possible to take the significance of bilayer permeability for the apparent energy of activation of water diffusion into account and estimate the energies of activation of water diffusion in the hydrophobic moiety of the bilayer, which were found to be close to the values for bulky water. The coefficients of water diffusion in the system under examination and the coefficients of permeation of water through the bilayer were estimated, and the effect of bilayer "defects" on the coefficients of water diffusion along and across bilayers was studied.  相似文献   

11.
Quantification of membrane partition potential of drug compounds is of great pharmaceutical interest. Here, a novel approach combining liquid-state NMR diffusion measurements and fast-tumbling lipid/detergent bicelles is used to measure accurately the partition coefficient K(p) of amantadine in phospholipid bilayers. Amantadine is found to have a strong membrane partition potential, with K(p) of 27.6 in DMPC and 37.8 in POPC lipids. Electrostatic interaction also plays a major role in the drug's affinity towards biological membrane as introduction of negatively charged POPG dramatically increases its K(p). Saturation transfer difference experiments in small bicelles indicate that amantadine localizes near the negatively charged phosphate group and the hydrocarbon chain of bilayer lipid. The approach undertaken in this study is generally applicable for characterizing interactions between small molecules and phospholipid membranes.  相似文献   

12.
The water permeability of the lipid bilayer can be used as a probe of membrane structure. A simple model of the bilayer, the liquid hydrocarbon model, views the membrane as a thin slice of bulk hydrocarbon liquid. A previous study (Petersen, D. (1980) Biochim. Biophys. Acta 600, 666–677) showed that this model does not accurately predict the water permeability of the monoolein/n-hexadecane bilayer: the measured activation energy for water permeation is 50% above the predicted value. From this it was inferred that the hydrocarbon chains in the lipid bilayer are more ordered than in the bulk hydrocarbon liquid. The present study tests the liquid hydrocarbon model for the monoolein/triolein bilayer, which has been shown to contain very little triolein in the plane of the membrane (Waldbillig, R.C. and Szabo, G. (1979) Biochim. Biophys. Acta 557, 295–305). Measurements of the water permeability coefficient of the bilayer are compared with predictions of the liquid hydrocarbon model based on measurements of the water permeability coefficient of bulk 8-heptadecene. The predicted and measured values agree quite closely over the temperature range studied (15–35°C): the predicted activation energy is 11.1±0.2 kcal/mol, whereas the measured activation energy for the bilayer is 9.8±0.7 kcal/mol. This close agreement is in contrast with the monoolein/n-hexadecane results and suggests that, insofar as water permeation is concerned, the liquid hydrocarbon model quite closely represents the monoolein/triolein bilayer.  相似文献   

13.
The effects of lipid chain packing and permeant size and shape on permeability across lipid bilayers have been investigated in gel and liquid crystalline dipalmitoylphosphatidylcholine (DPPC) bilayers by a combined NMR line-broadening/dynamic light scattering method using seven short-chain monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, and trimethylacetic acid) as permeants. The experimental permeability coefficients are compared with the predictions of a bulk solubility diffusion model in which the bilayer membrane is represented as a slab of bulk hexadecane. Deviations of the observed permeability coefficients (Pm) from the values predicted from solubility diffusion theory (Po) lead to the determination of a correction factor, the permeability decrement f (= Pm/Po), to account for the effects of chain ordering. The natural logarithm of f has been found to correlate linearly with the inverse of the bilayer free surface area with slopes of 25 +/- 2, 36 +/- 3, 45 +/- 8, 32 +/- 12, 33 +/- 4, 49 +/- 12, and 75 +/- 6 A2 for formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, and trimethylacetic acid, respectively. The slope, which measures the sensitivity of the permeability coefficient of a given permeant to bilayer chain packing, exhibits an excellent linear correlation (r = 0.94) with the minimum cross-sectional area of the permeant and a poor correlation (r = 0.59) with molecular volume, suggesting that in the bilayer interior the permeants prefer to move with their long principal axis along the bilayer normal. Based on these studies, a permeability model combining the effects of bilayer chain packing and permeant size and shape on permeability across lipid membranes is developed.  相似文献   

14.
Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes [IAM]), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here the authors introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer. The coating mimics the structure of the headgroup region, as well as the thickness and properties of the hydrocarbon core, more closely than IAM. The monolayer has a similar transition temperature pattern as the corresponding bilayer. The particles can be separated by filtration or a mild centrifugation. The partitioning equilibria of 81 tested chemicals were dissected into the headgroup and core contributions, the latter using the alkane/water partition coefficients. The deconvolution allowed a successful prediction of the bilayer/water partition coefficients with the standard deviation of 0.26 log units. The plate-friendly assay is suitable for high-throughput profiling of drug candidates without sacrificing the quality of analysis or details of the drug-phospholipid interactions.  相似文献   

15.
In artificial lipid bilayer membranes, the ratio of the water permeability coefficient (Pd(water)) to the permeability coefficient of an arbitrary nonelectrolyte such as n-butyramide (Pd(n-butyramide)) remains relatively constant with changes in lipid composition and temperature, even though the individual Pd's increase more than 100- fold. I propose that this is a general rule that also holds for the lipid bilayers of cells and tissues, and that therefore if Pd(water)/Pd(solute greatly exceeds the value found for artifical lipid bilayers (where "solute" is a molecule, such as 1,6 hexanediol or n- butyramide, that crosses the cell membrane by a solubility-diffusion mechanism without the aid of a special transporting system), then water crosses the cell membrane via aqueous pores. Applying this criterion to the toad urinary bladder, we find that even in the unstimulated bladder, water probably crosses the luminal membrane primarily through small aqueous pores, and that this almost certainly the case after antidiuretic hormone (ADH) stimulation. I suggest that ADH stimulation ultimately leads either to formation (or enlargement) of pores, by the rearrangement of preexisting subunits, or to an unplugging of these pores.  相似文献   

16.
Interaction of enkephalin peptides with anionic model membranes.   总被引:2,自引:0,他引:2  
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen(2),D-Pen(5)]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

17.
According to the liquid hydrocarbon model, the lipid bilayer is viewed simply as a thin slice of bulk hydrocarbon liquid. This allows the water permeability of the bilayer to be calculated from bulk properties. In this paper the prediction of the liquid hydrocarbon model is compared with the known water permeability coefficient of the glycerol monoolein/n-hexadecane bilayer (Fettiplace, R. (1978) Biochim. Biophys. Acta 513, 1–10). As the alkyl chain of glycerol monoolein is equivalent to 8-heptadecene, the water permeability coefficient of 8-heptadecene/n-hexadecane mixtures was measured for temperatures between 20 and 35°C. The mole fraction of n-hexadecane in the bulk liquid was chosen at each temperature to match the known mole fraction of n-hexadecane in the bilayer (White, S. (1976) Nature 262, 421–422). The predicted water permeability coefficient agrees with the measured value at 32°C but is 40% above the measured value at 20°C. The apparent activation energy predicted by the liquid hydrocarbon model is 9.0 ± 0.3 kcal/mol, while the measured value is 14.2 ± 1.0 kcal/mol. The failure of the liquid hydrocarbon model probably results from a different molecular organization of the hydrocarbon chains in the bilayer and in the bulk liquid.  相似文献   

18.
The nonspecific interaction of thiopental with erythrocyte ghosts, synaptic membranes, microsomes and mitochondria has been measured at 25°C and pH 6.6. In cholesterol-depleted erythrocyte ghosts the partition coefficient decreases with increasing cholesterol content. In sonicated liposomes made from egg lecithin and cholesterol the partition coefficient also decreases with increasing cholesterol content. The dependence of the partition coefficient on cholesterol content in the biological membranes, on average, parallels that in the lipid bilayers. The partition coefficient in lipid bilayers made from lipids extracted from erythrocyte ghosts was comparable to that in the corresponding egg lecithin/cholesterol bilayer. The partition coefficients of all the biomembranes are consistently lower than those in the corresponding egg lecithin/cholesterol bilayer, the free energy of transfer between biomembrane and corresponding bilayer being ?1 kcal/mol.  相似文献   

19.
The diffusion rates of [3H] adenine nucleotides across bimolecular lipid membranes were shown to be directly related to their organic/water partition coefficients, the order being ATP > ADP > AMP. Nucleotide diffusion was stimulated by divalent metal ions with the order of stimulation being Cu+2 ? Zn+2 > Mg+2. The ability of a divalent metal ion to stimulate diffusion appears to be related to its ability to bind to the N-7 of the adenine ring. The divalent metal ions increase adenine nucleotide diffusion both by complexing with the nucleotide thus decreasing the charge on the nucleotide and by increasing the permeability of the lipid bilayer.  相似文献   

20.
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen2,D-Pen5]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号