首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two macrophage markers associated with differentiation are the Fc receptor (FcR) and the Ia antigen. Expression of these markers is increased with IFN-gamma treatment, although some evidence suggests that the induction pathway for Fc receptor and Ia antigen expression may be dissociable. In this study, the effect of glucocorticoids on basal and IFN-induced levels of Fc-mediated phagocytosis and Ia antigen expression was investigated. Macrophages incubated for 2 days with glucocorticoids alone showed no change in basal levels of Fc-mediated phagocytosis. However, incubation with glucocorticoids plus IFN-gamma resulted in increased Fc-mediated phagocytosis and binding to a much greater extent than IFN-gamma treatment alone. This enhancement was specific for IFN-gamma, because the IFN-beta-induced increase in Fc-mediated phagocytosis and binding was not affected by glucocorticoids. In contrast to the expression of Fc receptor capacity, both basal and IFN-gamma-induced levels of Ia antigen expression were inhibited by glucocorticoids. The glucocorticoid effect on these two markers was not observed with other steroid hormones, nor was it altered by inhibitors of the arachidonic acid pathway. The findings of this study provide additional evidence that induction of Fc receptor and Ia antigen by IFN-gamma occurs by different mechanisms.  相似文献   

2.
In neutrophils, two receptors for IgG antibodies, namely FcγRIIA and FcγRIIIB are constitutively expressed, and a third one, FcγRI, can be upregulated by interferon-γ. Whether FcγRIIIB is capable of triggering phagocytosis by itself is still controversial. The main role of FcγRI has not been clearly established in these cells. To address this problem, neutrophils were treated with interferon-γ, and then phagocytosis mediated by each type of Fcγ receptor was evaluated by flow cytometry. FcγRIIA was the most efficient receptor for phagocytosis. FcγRIIIB could mediate phagocytosis but much less efficiently than FcγRIIA. Both FcγRIIA- and FcγRIIIB-mediated phagocytosis were blocked by inhibitors of Src family kinases, Syk, PI 3-K, and ERK. In contrast, interferon-γ-induced FcγRI was not able to mediate phagocytosis. Also, FcγRI did not activate ERK in the nucleus, but was however able to stimulate an efficient calcium rise. These data show that different neutrophil Fcγ receptors possess different phagocytosis capabilities: FcγRIIA and FcγRIIIB, but not FcγRI, promote phagocytosis.  相似文献   

3.
Human polymorphonuclear neutrophils (PMN) normally express two distinct types of IgG Fc gamma R, the 40-kDa Fc gamma R referred to as Fc gamma RII and the low affinity 50- to 70-kDa Fc gamma R designated Fc gamma RIII. A third type of Fc gamma R, the 72-kDa high affinity receptor known as Fc gamma RI, is also detectable on PMN that have been activated by IFN-gamma. Using mAb that discriminate among the three known types of Fc gamma R, we examined the effects of IFN-gamma and glucocorticoids on human PMN Fc gamma R expression. We also studied effects of IFN-gamma and the synthetic glucocorticoid dexamethasone (DEX) on antibody-dependent cytotoxicity (ADCC) of chicken erythrocytes and phagocytosis of IgG-coated ox RBC by human PMN. In 20 donors studied, we found that treatment of PMN with 400 U/ml IFN-gamma induced a 9- to 20-fold increase in the number of Fc gamma RI sites per cell, and DEX inhibited this induction of Fc gamma RI by 39 to 73%. Similarly, DEX significantly reduced the IFN-gamma stimulation of ADCC and phagocytosis. IFN-gamma had no effect on expression of Fc gamma RII or Fc gamma RIII. Fc gamma RI and Fc gamma RII expression was unaltered by 24 h of treatment with DEX alone, but Fc gamma RIII expression was sometimes increased by about 20% on PMN cultured with DEX. Nevertheless, we found a small but significant inhibition of ADCC and phagocytosis by 200 nM DEX. Our results indicate that Fc gamma RI plays a major but not exclusive role in the regulation of ADCC and phagocytosis by IFN-gamma and DEX.  相似文献   

4.
This study was carried out to determine whether Kupffer cell Fc receptor function is depressed after injury. Three approaches to the determination of Fc receptor function were evaluated: IgG-coated erythrocytes (EIgG) were used as the receptor probe with a perfused liver system, EIgG were used as the receptor probe in vivo, and small aggregates of IgG (AIgG) were used as the receptor probe in vivo. Nearly half of the injected dose of EIgG was taken up by the perfused liver (nonrecirculating, serum-free system). In contrast, only 2.6% of erythrocytes not coated with IgG were taken up, and only 5.6% of erythrocytes coated with IgM were taken up by the perfused liver. Thus, there was little nonspecific or complement-dependent uptake of EIgG by the liver. The uptake of EIgG by the perfused liver was depressed following thermal injury, endotoxemia, and the phagocytosis of EIgG. These results were interpreted as indicating that Kupffer cell Fc receptor function was depressed under these conditions. The results obtained with the hepatic uptake of EIgG in vivo were very similar to those with EIgG in the perfused liver. However, since it was found that complement receptors as well as Fc receptors were probably involved in the in vivo clearance of EIgG, these results could be due to a depression of one or both of these receptors. The hepatic uptake of AIgG was not depressed by complement depletion, but was decreased by the injection of large aggregates of IgG. However, the hepatic uptake of AIgG was not depressed following thermal injury, endotoxemia, or the phagocytosis of EIgG. Thus, AIgG was not sensitive to the effects of injury on Kupffer cell function, whereas the uptake of EIgG by the perfused liver may provide an indication of Kupffer cell Fc receptor function. The depression of Kupffer cell Fc receptor function following injury may contribute to the impairment of host defense caused by injury.  相似文献   

5.
Three mouse tumour cell lines grew continuously in 3 micro M 5-bromodeoxyuridine (BUdR). One line (MC-2) produced a retrovirus and altered in morphology in the presence of BUdR or 5-iododeoxyuridine (IUdR). These effects, which could be reversed by growth in normal medium were similar to those reported for the B-16 mouse melanoma line. The B-16 line used in this study, however, as well as a variety of human cells (six melanoma lines and three fibroblast strains), were much more sensitive to BUdR, 0.03-0.1 micro M being the maximum tolerated levels for continuous growth. No virus production or changes in morphology were induced in these cells by BUdR, deoxyuridine (UdR), 5-fluorodeoxyuridine (FUdR) or thymidine (TdR). The results of cell labelling and growth studies showed a correlation of incorporation of BUdR into DNA with toxicity. Compared on a competitive basis with 1 micro M TdR, the order of incorporation of 1 micro M nucleosides by two human cell lines was TdR = BUdR = IUdR greater than UdR greater than FUdR. In contrast to previous reports that FUdR is incorporated into RNA but not into DNA, half of the FUdR label was found in alkalistable, DNase-sensitive material. Over 90% of the other compounds was incorporated into DNA. All of the UdR and 60% of the IUdR label was incorporated as thymidine; this conversion could be inhibited by labelling in the presence of FUdR.  相似文献   

6.
We investigated the positive and negative effects of IFN-gamma, PMA, dibutyryl cAMP (Bt2cAMP), dexamethasone and transforming growth factor-beta (TGF-beta) on Fc gamma R subtype expression and phagocytosis of a human monoblast cell line, U937. IFN-gamma increased and Bt2cAMP decreased Fc gamma RI expression determined by a mAb 32.2, whereas PMA and Bt2cAMP increased Fc gamma RII expression determined by a mAb IV-3. Phagocytosis was measured microscopically by counting ingested aggregated human IgG- or BSA-treated ox E (Eo'-IgG or Eo'-BSA). IFN-gamma increased the phagocytosis of Eo'-IgG but not that of Eo'-BSA, and PMA increased the phagocytosis of both Eo'-IgG and Eo'-BSA. Bt2cAMP decreased both basal and IFN-gamma- and PMA-augmented phagocytosis of U937 cells. Dexamethasone also inhibited both basal and IFN-gamma-augmented Fc gamma RI expression and PMA-augmented Fc gamma RII expression and phagocytosis, but did not affect IFN-gamma-augmented phagocytosis of Eo'-IgG. The augmentation of phagocytosis of Eo'-IgG by IFN-gamma thus seems to be due mainly to the increased internalizing process rather than to increased Fc gamma RI expression. TGF-beta slightly decreased Fc gamma R expression. In a study of the participation of protein kinase C (PK-C), it was found that H-7, a PK-C inhibitor, did not inhibit either IFN-gamma- or PMA-enhanced Fc gamma RI and Fc gamma RII expression, respectively, and 1-oleoyl-2-acetylglycerol and N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide, both PK-C activators, did not show any apparent increase in Fc gamma R expression and phagocytosis. These results show that Fc gamma RI and Fc gamma RII expression on U937 cells is regulated by different mechanisms and that IFN-gamma and PMA play their roles in Fc gamma R expression and phagocytosis by different pathways. It is possible that cAMP but not PK-C plays an important role in the regulation of Fc gamma R expression and phagocytosis.  相似文献   

7.
Studies on genetically selected mutants in phagocytosis of E[IgG] indicated that the defect in some mutants could be corrected by addition of 8 Br-cAMP, and suggested that cyclic AMP may be involved in the mechanism of phagocytosis through the Fc receptor. In order to elucidate the role of cyclic AMP in phagocytosis in the parental, nonmutant macrophage-like cell line, J774.2, it was necessary to employ restrictive conditions which rendered phagocytosis suboptimal. When 4774.2 cells were cultured in nontissue culture Petri dishes phagocytosis was markedly reduced. Addition of 8 Br-cAMP or inducers of intracellular cyclic AMP such as isoproterenol restored the phagocytic ability of these cells. Similarly, treatment of the parental J774.2 cells with insulin reduced the level of phagocytosis, and once again this suppression could be corrected by addition of 8 Br-cAMP. In no case did AMP mimic the effects of 8 Br-cAMP. The effect of cyclic AMP action in this system was not instantaneous, but rather reached optimal levels at 5 to 10 hr, suggesting that cyclic AMP is not the immediate signal for phagocytosis. The genetic analysis of macrophage variants may provide a useful model for studies on the mechanisms of phagocytosis, and also the effects of insulin and cyclic AMP on an easily measurable biologic function in a specialized cell type.  相似文献   

8.
The objectives of these studies were to study the effects of bacterial lipopolysaccharide (LPS) on interferon-gamma (IFN-gamma)-induced Fc receptor expression on human monocytes and to examine whether these effects were mediated through stimulation of interleukin 1 (IL-1) production. Fc receptor expression was determined by binding of monomeric monoclonal murine immunoglobulin (Ig)G2a and cytofluorographic analysis. IL-1 activity in monocyte supernatants and lysates was assayed by augmentation of mitogen-induced murine thymocyte proliferation. IFN-gamma induced the expression of Fc receptors on human monocytes that were specific for murine IgG2a. This induction was inhibited by the addition of LPS in amounts as low as 2 to 8 pg/ml. LPS inhibition of IFN-gamma-induced Fc receptor expression was paralleled by the appearance of IL-1 in monocyte lysates and supernatants. The addition of purified human or recombinant IL-1 beta at the initiation of culture similarly inhibited the expression of IFN-gamma-induced Fc receptors on the monocytes. LPS also inhibited Fc receptor expression on the human myelomonocytic cell line THP-1 after induction with IFN-gamma or phorbol myristate acetate alone or with both agents together. This inhibition also was paralleled by the production of IL-1 but the addition of exogenous IL-1 to the THP-1 cells had no effect on IFN-gamma-induced Fc receptor expression. Tumor necrosis factor (TNF) inhibited IFN-gamma-induced Fc receptor expression on human monocytes but was much less potent than comparable amounts of IL-1. TNF also did not inhibit Fc receptor expression on THP-1 cells. In fact, IL-1 or TNF led to an enhancement in IFN-gamma-induced Fc receptor expression on THP-1 cells. These results indicate that LPS can inhibit IFN-gamma-induced Fc receptor expression on human monocytes and that IL-1 and TNF may mediate these effects of LPS. Thus, an autocrine or paracrine role is suggested for these cytokines. The possibility exists that intracellular IL-1 resulting from LPS stimulation may be at least in part responsible for inhibition of Fc receptor expression.  相似文献   

9.
To elucidate the actions of Draper, a receptor responsible for the phagocytic clearance of apoptotic cells in Drosophila, we isolated proteins that bind to the extracellular region of Draper using affinity chromatography. One of those proteins has been identified to be an uncharacterized protein called Drosophila melanogaster calcium-binding protein 1 (DmCaBP1). This protein containing the thioredoxin-like domain resided in the endoplasmic reticulum and seemed to be expressed ubiquitously throughout the development of Drosophila. DmCaBP1 was externalized without truncation after the induction of apoptosis somewhat prior to chromatin condensation and DNA cleavage in a manner dependent on the activity of caspases. A recombinant DmCaBP1 protein bound to both apoptotic cells and a hemocyte-derived cell line expressing Draper. Forced expression of DmCaBP1 at the cell surface made non-apoptotic cells susceptible to phagocytosis. Flies deficient in DmCaBP1 expression developed normally and showed Draper-mediated pruning of larval axons, but a defect in the phagocytosis of apoptotic cells in embryos was observed. Loss of Pretaporter, a previously identified ligand for Draper, did not cause a further decrease in the level of phagocytosis in DmCaBP1-lacking embryos. These results collectively suggest that the endoplasmic reticulum protein DmCaBP1 is externalized upon the induction of apoptosis and serves as a tethering molecule to connect apoptotic cells and phagocytes for effective phagocytosis to occur.  相似文献   

10.
Crescentic glomerulonephritis (Crgn) is a complex disease where the initial insult is often the glomerular deposition of antibodies against intrinsic or deposited antigens in the glomerulus. The role of Fc receptors in the induction and progression of Crgn is increasingly recognized, and our previous studies have shown that copy number variation in Fcgr3 partially explains the genetic susceptibility of the Wistar-Kyoto (WKY) rat to nephrotoxic nephritis, a rat model of Crgn. The Fcgr3-related sequence (Fcgr3-rs) is a novel rat-specific Fc receptor with a cytoplasmic domain 6 amino acids longer than its paralogue, Fcgr3. The Fcgr3-rs gene is deleted from the WKY rat genome, and this deletion is associated with enhanced macrophage activity in this strain. Here, we investigated the mechanism by which the deletion of Fcgr3-rs in the WKY strain leads to increased macrophage activation. By lentivirus-mediated gene delivery, we generated stably transduced U937 cells expressing either Fcgr3-rs or Fcgr3. In these cells, which lack endogenous Fcgr3 receptors, we show that Fcgr3-rs interacts with the common Fc-γ chain but that Fc receptor-mediated phagocytosis and signaling are defective. Furthermore, in primary macrophages, expression of Fcgr3-rs inhibits Fc receptor-mediated functions, because WKY bone marrow-derived macrophages transduced with Fcgr3-rs had significantly reduced phagocytic activity. This inhibitory effect on phagocytosis was mediated by the novel cytoplasmic domain of Fcgr3-rs. These results suggest that Fcgr3-rs may act to inhibit Fcgr3-mediated signaling and phagocytosis and could be considered as a novel mechanism in the modulation of Fc receptor-mediated cell activation in autoimmune diseases.  相似文献   

11.
The tyrosine phosphorylation cascade originated from Fc gamma receptors (Fc gamma Rs) is essential for macrophage functions including phagocytosis. Although the initial step is ascribed to Src family tyrosine kinases, the role of individual kinases in phagocytosis signaling is still to be determined. In reconstitution experiments, we first showed that expression in the RAW 264.7 cell line of C-terminal Src kinase (Csk) inhibited and that of a membrane-anchored, gain-of-function Csk abolished the Fc gamma R-mediated signaling that leads to phagocytosis in a kinase-dependent manner. We next tested reconstruction of the signaling in the membrane-anchored, gain-of-function Csk-expressing cells by introducing Src family kinases the C-terminal negative regulatory sequence of which was replaced with a c-myc epitope. Those constructs derived from Lyn and Hck (a-Lyn and a-Hck) that associated with detergent-resistant membranes successfully reconstructed Fc gamma R-mediated Syk activation, filamentous actin rearrangement, and phagocytosis. In contrast, c-Src-derived construct (a-Src), that was excluded from detergent-resistant membranes, could not restore the series of phagocytosis signaling. Tyrosine phosphorylation of Vav and c-Cbl was restored in common by a-Lyn, a-Hck, and a-Src, but Fc gamma RIIB tyrosine phosphorylation, which is implicated in negative signaling, was reconstituted solely by a-Lyn and a-Hck. These findings suggest that Src family kinases are differentially involved in Fc gamma R-signaling and that selective kinases including Lyn and Hck are able to fully transduce phagocytotic signaling.  相似文献   

12.
Mutations were induced in synchronous Chinese hamster cells by bromodeoxyuridine (BUdR) incorporated into cells for one-hour periods in the cell cycle. There was a very pronounced temporal dependence during the first half of the DNA synthesis period for the induction of damage leading to 6-thioguanine (6TG) and ouabain resistance. No mutants above background were induced by exposure to BUdR in G1 and G2 cells, and very few mutants were induced in the latter part of the DNA synthesis period. The peak for the induction of 6TG resistance occurs at about two hr in the DNA synthesis period; one hour later there is a peak for the induction of ouabain resistance. Both peaks occur before the time of maximum incorporation of BUdR into DNA. These results suggest that the mutagenesis by BUdR is associated with at least two nuclear genes, which replicate at two hr and three hr in the DNA synthesis period.  相似文献   

13.
Fc receptor-mediated mononuclear phagocyte system (MPS) clearance is impaired in systemic lupus erythematosus (SLE) and may contribute to the pathogenesis of the immune complex disease. To investigate the basis of MPS dysfunction, we have examined concurrent in vivo and in vitro Fc receptor function in 22 patients with SLE and 23 disease-free adults. Blood monocyte Fc receptor binding was increased rather than decreased as predicted by the saturation hypothesis of MPS blockade. Rosette formation of IgG-sensitized bovine erythrocytes (EA) with monocytes demonstrated increased Fc receptor-ligand binding in SLE (percent rosettes: 40 +/- 12 vs 27 +/- 8, p less than 0.001). Scatchard analysis of the binding of radiolabeled IgG oligomers to SLE monocytes indicated a mean receptor number 30% higher than control, although this did not reach statistical significance. Despite enhanced Fc receptor-ligand (EA) binding, Fc-mediated phagocytosis of EA was decreased in SLE (1.7 +/- 0.7 erythrocytes/monocytes/hour vs 2.6 +/- 1.0, p less than 0.004). This decrease in phagocytosis by blood monocytes from SLE patients was significantly greater than that attributable to the predominance in SLE of individuals with certain HLA B cell alloantigens and intrinsically lower phagocytic rates (p less than 0.05 for all groups). This decrease therefore represents a disease-acquired characteristic. Furthermore, the phagocytic rate of the four SLE patients with marked prolongation in MPS clearance was significantly lower than that of the eight patients with near normal clearance values (p less than 0.01). Saturation of Fc receptors by immune complexes does not explain impaired immune clearance in SLE. Our results indicate that despite increased binding of the EA ligand, Fc receptor-mediated phagocytosis is markedly impaired in SLE monocytes. This impairment cannot be explained on the basis of HLA-related differences in phagocytosis among lupus patients. The defect in phagocytosis of EA is most profound in those patients with the most significantly impaired MPS clearance. Thus, the dissociation of receptor-ligand binding and receptor-mediated internalization may contribute significantly to the in vivo clearance defect in SLE.  相似文献   

14.
15.
Normal macrophages were activated to antibody-dependent cytotoxic effector cells by in vitro treatment with the local anesthetic lidocaine. Experiments on the dose-response and time course of the effect of lidocaine showed that incubation of normal macrophages with 10 mM lidocaine for 10 min at 28 C was enough for induction of antibody-dependent cellular cytotoxicity. The activation by lidocaine was accompanied by enhanced phagocytosis of sheep red blood cells (SRBC) sensitized with anti-SRBC antiserum, but not enhanced ingestion of polystyrene latex particles (PLP). These findings suggest that lidocaine, which has various effects on cell membranes, induces some perturbation of macrophage membranes, resulting in activation of Fc receptor functions in antibody-dependent cytotoxicity and phagocytosis.  相似文献   

16.
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant) were used as phagocytes. When l(2)mbn cells were treated with the molting hormone 20-hydroxyecdysone, the cells acquired the ability to phagocytose apoptotic S2 cells, another Drosophila cell line. S2 cells undergoing cycloheximide-induced apoptosis exposed phosphatidylserine on their surface, but their engulfment by l(2)mbn cells did not seem to be mediated by phosphatidylserine. The level of Croquemort, a candidate phagocytosis receptor of Drosophila hemocytes/macrophages, increased in l(2)mbn cells after treatment with 20-hydroxyecdysone, whereas that of Draper, another candidate phagocytosis receptor, remained unchanged. However, apoptotic cell phagocytosis was reduced when the expression of Draper, but not of Croquemort, was inhibited by RNA interference in hormone-treated l(2)mbn cells. We next examined whether Draper is responsible for the phagocytosis of apoptotic cells in vivo using an assay for engulfment based on assessing DNA degradation of apoptotic cells in dICAD mutant embryos (which only occurred after ingestion by the phagocytes). RNA interference-mediated decrease in the level of Draper in embryos of mutant flies was accompanied by a decrease in the number of cells containing fragmented DNA. Furthermore, histochemical analyses of dispersed embryonic cells revealed that the level of phagocytosis of apoptotic cells by hemocytes/macrophages was reduced when Draper expression was inhibited. These results indicate that Drosophila hemocytes/macrophages execute Draper-mediated phagocytosis to eliminate apoptotic cells.  相似文献   

17.
The mechanisms of Fc gamma R-mediated phagocytosis of immune complexes were investigated by the use of a murine macrophage-like cell line (P388D1) and murine peritoneal resident macrophages. About 40 to 80% of P388D1 cells phagocytosed SRBC coated with IgG2a subclass anti-SRBC mAb (EA2a) within 60 min, whereas only 10 to 20% of the cells phagocytosed EA2b during the same period. The treatment of P388D1 cells with inhibitors of phospholipase A2 (p-bromophenacylbromide, EGTA, or dexamethasone) or of cyclooxygenase (indomethacin or aspirin) significantly promoted the Fc gamma 2bR-mediated phagocytosis of EA2b, but did not affect the Fc gamma 2aR-mediated phagocytosis of EA2a. These results suggest that the activation of phospholipase A2 activity associated with Fc gamma 2bR may lead to the inhibition of phagocytosis of EA2b. This inhibition appeared to be due to the blockade of the interaction of Fc gamma 2bR with various cytoskeletal components, because the association of Fc gamma 2bR and these cytoskeletal components, which could be eliminated by cytochalasin D, was found to be increased by the inhibition of phospholipase A2 activity.  相似文献   

18.
Impaired Fc gamma receptor-mediated phagocytosis has been reported in monocytes from HLA-DR2- and -DR3-positive disease-free individuals compared to normals without these B cell alloantigens. We have noted, however, a decrease in the ingestion of concanavalin A (Con A)-treated rabbit erythrocytes (E-Con A) in the same immunogenetically defined groups (DR2 vs Other: 2.94 +/- 0.84 erythrocytes/monocyte vs 4.16 +/- 1.37, p less than 0.003; DR3 vs Other: 3.35 +/- 1.51 vs 4.16 +/- 1.37, p less than 0.04). These data raised the possibility that carbohydrate-lectin interactions might trigger ingestion mediated by the Fc gamma receptor. To test this hypothesis, we performed receptor modulation and monosaccharide blocking experiments. Modulation of the Fc gamma receptor off the apical cell surface of monocytes by adherence to solid-phase IgG aggregates specifically reduced internalization of E-Con A and IgG-sensitized erythrocytes (EA) to 9.1% and 10.6% of control, respectively (p less than 0.001). Internalization of wheat germ agglutinin-treated erythrocytes, tannic acid-treated erythrocytes, and zymosan was not inhibited. In reciprocal modulation experiments using solid-phase Con A, no effects on phagocytosis of any particle was observed. alpha-Methyl mannoside, 0.1 M in PBS, did not inhibit the internalization of EA but blocked ingestion of E-Con A by 97% (p less than 0.001). Other monosaccharides had little or no effect on the ingestion of any of the phagocytic probes. These data demonstrate that a mechanism integrally involving the Fc gamma receptor mediates the ingestion of E-Con A by human monocytes. This Fc receptor has an oligosaccharide(s) with an exposed mannose which may be functionally significant. Whereas the mannose moiety does not play a crucial role in the interaction of the Fc gamma receptor with the Fc portion of IgG, engagement of the receptor via mannose can initiate internalization. Our findings raise the possibility that nonimmune functions may utilize classical immune system receptors through carbohydrate interactions. Furthermore, the ability of the Fc gamma receptor to trigger internalization is defective in HLA-DR2 and -DR3 normals, whether the receptor is ligated at its classical ligand-binding site or by way of its carbohydrate moieties.  相似文献   

19.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

20.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号