首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
云南山茶花尖培养中多芽体的形成和生根的研究   总被引:1,自引:0,他引:1  
本文报道云南山茶花的芭培养诱导形成多芽体和生根的条件及影响因素。MS培养其中中含有较高浓度BA和适量或NAA诱导形成多芽体,外植体的母株年龄明显影响多芽体的形成,幼龄种苗外植体的多芽诱导率高于成年树。MW和1/2ER培养基比MS培养基的生根效果好。试管植物移栽入土后长正常并已开花。  相似文献   

2.
用成年云南山楂(Crataegus scabrifolia(Franch)Rehd.树的无菌增殖芽苗作为生根试验材料。结果表明:接种在含生长素(IBA、NAA)0.01-1.0mg/1的MS/2培养基中,芽苗的平均生根率为50.4%;在高浓度(150-250mg/1)生长素溶液中浸泡芽苗基部30分钟,然后接种到无生长素的MS/2培养基中,其生根率为60.1%;用高浓度生长素液蘸芽苗基部的生根率为83.5%;芽苗在含IBA1-5mg/1的培养基中培养2-4天,然后转入MS/2培养基中诱导生根,生根率可达92%以上,根伸长正常。黑暗条件明显抑制生根,每日16小时至24小时光照对芽苗生根有益。  相似文献   

3.
用成年云南山楂Crataegus scabrifolia(Franch)Rehd.树的无菌增殖芽苗作为生根试验材料。结果表明:接种在含生长素(IBA、NAA)0.01—1.0mg/l的MS/2培养基中,芽苗的平均生根率为50.4%;在高浓度(150—250mg/l)生长素溶液中浸泡芽苗基部30分钟,然后接种到无生长素的MS/2培养基中,其生根率为60.1%;用高浓度生长素液蘸芽苗基部的生根率为83.5%;芽苗在含IBA 1—5mg/l的培养基中培养2—4天,然后转入MS/2培养基中诱导生根,生根率可达92%以上,根伸长正常。黑暗条件明显抑制生根,每日16小时至24小时光照对芽苗生根有益。  相似文献   

4.
用云南山楂(Crataegus scabrifolia(Franch.)Rehd.)成年树茎尖和实生芽两种不同发育阶段的材料为外殖体,诱导它们休眠芽萌动,丛生芽条并诱导芽条生根。实验结果如下:1.以成年态的云南山楂侧芽为外植体,培养在附加IAA 0.1—0.5mg/l+6-BA 1-2mg/l的MS培养基上可诱导芽的萌发;将芽继代培养在附加0.5—1mg/l 6-BA的SH或MS培养基上,40天后芽数增殖4—6倍;将芽条截下置于1/2MS培养基上,附加不同浓度的IAA或IBA,可得到50—80%的生根率。2.以实生芽为外殖体,在相同条件下,则20天后芽数增殖便可获4—6倍;98%以上生根。结果表明:云南山楂的幼年态要比成年态易脱分化和再分化。  相似文献   

5.
为有力推动猕猴桃产业化种苗生产及推广,快速高效地繁育猕猴桃新种质资源,同时为猕猴桃多倍体育种、转基因育种等新兴育种技术创造新种质资源奠定基础,该研究以‘东红’猕猴桃叶片、叶柄为外植体,探讨了不同植物生长调节剂种类及质量浓度组合对不定芽诱导过程中不定芽形成的影响,并研究了不同植物生长调节剂对‘东红’组培苗不定根诱导的影响。结果表明:‘东红’再生最佳外植体为叶柄,叶柄不定芽再生最佳培养基为MS+0.5μg·mL~(-1)6-BA+0.2μg·mL~(-1)NAA,不定芽平均再生率为91.2%;不定芽经过壮苗培养(MS+0.2μg·mL~(-1)6-BA+0.05μg·mL~(-1)NAA),取2~3 cm高幼苗进行生根诱导,不定根再生率为93%,平均根数为6条;生根后,种苗移栽成活率在80%以上。初步建立了‘东红’叶柄高效再生体系,为猕猴桃快速的产业化种苗生产及推广提供了有力保证,也为后期猕猴桃育种研究提供理论依据。  相似文献   

6.
以香叶天竺葵的叶片和叶柄切段为外植体诱导愈伤组织,经过芽诱导、生根诱导等过程成功获得了香叶天竺葵的再生植株。对香叶天竺葵芽的诱导、芽的继代增殖、根的诱导及再生植株移栽等环节进行了优化,在对比研究过的各种培养基中,MS+0.2mg·L-1NAA+0.75mg·L-1BA为最适宜的芽诱导和增殖培养基,芽诱导率达30%,不定芽增殖频率也高于其它培养基;1/2MS+0.2mg·L-1NAA最适于进行生根诱导,生根率高达92%,在该培养基中诱导生根,再生植株的根和芽均显示出较好的长势,移栽成活率也高。该项研究为香叶天竺葵的工厂化大规模育苗提供了依据。  相似文献   

7.
爪哇三七组织培养植株再生   总被引:1,自引:0,他引:1  
本文报道了爪哇三七通过组织培养再生植株的方法。爪哇三七的叶片,叶柄或茎段外植体分别接种于6种分化培养基上,均难以直接分化。在附加1mgL~(12),4-D和0.1mgL~(-1)KT的B_5培养基上的叶片形成无色疏松的愈伤组织转接于MS附加1mgL~(-1)BAP和0.1mg L~(-1)NAA培养基上,5天后开始形成绿色球胚状结构,继而形成不定芽或丛生芽。这些不定芽或丛生芽在锈根培养基中迅速长成根系发达的完整植株。此外,本试验比较了不同浓度及不同组合的激素对爪哇三七外植体的脱分化、再分化的影响。并讨论了此项工作对柑桔裂皮病类病毒(简称CEV)的复制及致病机理研究的意义。  相似文献   

8.
以睡菜的幼嫩茎段为外植体,接种到附加不同浓度激素配比(6-BA/NAA)的MS培养基,诱导睡菜愈伤组织、芽及根的生长。研究发现,外植体在1.0mg/L 6-BA+0.1mg/L NAA+MS的培养基上培养10d,可观察到浅绿色的愈伤组织。愈伤组织转接到4.0mg/L 6-BA+0.3mg/L NAA+MS培养基上2周左右可生成芽。对带芽的愈伤组织再进行诱导生根进而形成完整再生植株,最适根诱导培养基为0.3mg/L 6-BA+1.0mg/L NAA+MS培养基。该实验采用植物离体快繁技术成功建立了睡菜再生体系,为睡菜种苗规模化奠定了技术基础。  相似文献   

9.
花生体细胞胚的诱导及其植株再生   总被引:8,自引:0,他引:8  
采用不同成熟度的花生胚轴为外植体进行体细胞胚诱导及植株再生研究,结果表明,成熟胚轴在高浓度2,4-D的MS培养基中,经过30d左右的培养,可直接诱导产生出大量的体细胞胚,含40mgL~-12,4-D的培养基中体细胞胚的诱导率达100%,平均每个外植体产生11.58个体细胞胚.体细胞胚的继代培养需降低2,4-D的浓度(1-20mgL~-1).未成熟胚轴的体细胞胚诱导及继代培养的2,4-D浓度宜为10mgL~-1.将诱导的体细胞胚转接到合5-10mgL~-1BA的MS培养基中,体细胞胚能够萌发再生成无根小植株,将其转接到生根培养基中可获得完整小植株.  相似文献   

10.
该文以青钱柳幼嫩茎段为外植体,研究其种苗快速繁殖技术。结果表明:青钱柳最佳采样时间为4月—6月,最佳外植体为轻微木质化茎段;最佳的外植体表面消毒方法为用0.1%HgCl_2浸泡5~7 min,消毒成功率54.1%,无菌外植体存活率88.7%;初代芽诱导培养基为MS+6-BA 2.0 mg·L~(-1)+IBA 0.2 mg·L~(-1)+蔗糖30.0 g·L~(-1),芽诱导率80.5%,培养21 d初代芽苗平均高度3.0 cm;最佳继代增殖培养基为MS+6-BA 0.5mg·L~(-1)+IBA 0.05 mg·L~(-1)+TIBA 0.02 mg·L~(-1)+蔗糖30.0 g·L~(-1),培养35 d,增殖系数7.0/35 d,平均苗高4.5cm,芽苗健壮且无玻璃化;生根前的壮苗培养基为MS+6-BA 0.5 mg·L~(-1)+IBA 0.05 mg·L~(-1)+蔗糖30.0 g·L~(-1),培养35 d,长出的芽苗高大健壮,平均苗高6.0 cm;生根培养基为1/2WPM+IBA 1.5 mg·L~(-1)+5-NGS 4.5mg·L~(-1)+蔗糖20.0 g·L~(-1),培养40 d,最高生根率83.3%;生根苗较适合的移栽基质为泥碳土,较好的移栽季节为3月—5月和10月—11月,移栽后在遮光度70%的大棚中培养40 d,移栽成活率为54.3%~65.6%。该研究为其优良无性系的规模化繁育奠定基础。  相似文献   

11.
菜心(Brassica campestris L.subsp.chinensis Makino var.parachinensis Tsen et Lee)为十字花科芸薹属芸薹种中国白菜亚种中的一个变种,又名“菜薹”。它是我国南方特产蔬菜之一,在蔬菜的周年供应上有重要地位。目前迫切需要培育抗病虫、抗逆和具有其他优良农艺性状的新品种,以提高菜心的  相似文献   

12.
Efficient plant regeneration systems both from shoot segments and via callus organogenesis were developed for Kosteletzkya pentacarpos (L.) Ledeb., a rare and endangered Eurasian species. In the experiments with existing meristems, factors affecting shoot proliferation, including explant type, i.e. decapitated and intact shoots, and plant growth regulators, indole-3-acetic acid or kinetin, were investigated. Shoot proliferation was significantly affected by the type of explant, the hormones and their interaction. The highest shoot multiplication rate was obtained from decapitated shoots. Increasing kinetin concentration promoted shoot elongation regardless of explant type. In intact shoots, shoot length was also affected by increasing auxin concentration, although this effect tends to decrease with higher concentration. Decapitated shoots were not responsive to the addition of auxin. Micropropagation through organogenesis from callus was also investigated. Calli were obtained from leaf, stem internode and root explants. Only the leaf-derived calli produced shoots and indole-3-acetic acid favoured increased numbers of shoots. A number of experiments were conducted for rooting of in vitro produced shoots. All of them induced high rooting frequency, the number and the length of roots being dependent on the strength of the basal medium. The use of 1–2 mg l−1 indole-3-butyric acid resulted in refining the optimal concentration for root elongation. The regenerated plants (70%) survived and flowered in their first vegetative period.  相似文献   

13.
In vitro multiplication of Nothapodites foetida (Wight.) Sleumer was achieved using axenic seedling explant cultures. Isolated nodes (1.0-1.2 cm) and shoot tips (1.0-1.5 cm) cultured in Murashige and Skoog's agar medium containing varying concentrations of TDZ, BA and combinations of 2iP and GA3. Single shoot (0.8-1.2 cm) was regenerated in each culture after 6 weeks. Axillary shoots were then excised and recultured for 8 weeks in medium containing TDZ (0.05 mgL-1) which formed shoots (about 4 in no.; 2 cm) from the basal node. Axillary branches (2) which formed on 60% of these shoots after 10-12 weeks of culture were separated and recultured in the same medium for 8 weeks. Three shoots (0.8-1.0 cm) per culture were regenerated. Shoots of 0.8-1.8 cm length were subcultured on a low cytokinin (0.01 mgL-1 TDZ) regime to induce shoot elongation (2.0-3.5 cm) in 4 weeks. Shoot cuttings were rooted (60%) in the medium containing IBA (1.5 mgL-1). Rooted plantlets established in pots (90%) after hardening resumed normal growth in 3 months.  相似文献   

14.
PP333对分蘖洋葱试管苗增殖和生根的影响   总被引:8,自引:1,他引:8  
以MS 0.1 mg·L-1NAA 0.4 mg·L-1 6-BA为增殖培养基,1/2MS 1.5 mg·L-1IBA 0.01 mg·L-1NAA为生根培养基,添加不同浓度PP333的结果表明:增殖培养基中添加1.0 mg·L-1PP333对分蘖洋葱试管苗增殖生长有促进作用,减少超度含水态苗的发生;生根培养基中添加0.1 mg·L-1PP333对分蘖洋葱试管苗生根壮苗有良好效应.  相似文献   

15.
A protocol for in vitro multiple shoot regeneration and plant production through seedling (shoot tip) culture was established for Alysicarpus rugosus DC. var. heyneanus Baker. Maximum number of adventitious shoots (14.4) per shoot tip explant were initiated after two subcultures on MS solid medium supplemented with IAA (2.85 microM) plus BAP (2.22 microM) after 4 weeks. Shoot elongation (3.0-3.5 cm) was achieved on MS medium without any hormones. Stunted shoots elongated on half MS medium without growth hormones. Rooting occurred in MS medium containing IAA (1.14 - 2.85 microM) alone or in combination with IBA (0.89 - 2.46 microM) and or NAA (1.07 - 2.69 microM). Maximum rooting was established in MS medium supplemented with IAA (2.85 microM). The plants were acclimatized successfully with 55% survival in pot containing cocoa peat and sand (1:1). After a month, hardened plants were transferred to pots with manure, garden soil and sand (1:2:1) for further growth and finally planted in field.  相似文献   

16.
影响四季桔器官发生的因素   总被引:10,自引:0,他引:10  
对四季桔胚轴直接出芽、愈伤组织诱导及植株再生能力的研究表明:上、下胚轴在含有BA的MT培养基上,均能直接出芽,但上胚轴出芽能力明显高于下胚轴,最高出芽率为96.9%。外植体在培养基上的接种方式,对出芽也有一定影响,上胚轴切段以形态学下端垂直插入,出芽率高,且在培养前期表现尤为突出。胚轴愈伤诱导的适宜培养基为MT+IBA0.5mg-1+BAgmg-1。愈伤组织分化时,上、下胚轴愈伤组织所要求的BA浓度分别为4mgL-1及2mgL-1。在根的诱导中,附加的生长素种类,不仅影响生根率的高低,而且影响上部茎叶的生长,其中以加入lmgL-1IBA的效果最好,生根率达84.4%。  相似文献   

17.
The eucalypt Corymbia torelliana × C. citriodora is planted widely in India, Brazil and Australia although plantation establishment has been limited by inadequate seed supply and low amenability to propagation via cuttings. This study optimised node culture and organogenic culture methods for in vitro propagation of Corymbia hybrids by identifying explant position (topophysic) effects on rooting, shoot elongation and shoot proliferation. Strong, negative morphogenic gradients in shoot elongation and proliferation capacity were evident from the cotyledonary node to the fourth or fifth node of seedlings when their nodes were transferred to node culture (without benzyladenine). These topophysic effects were related to differences in rooting capacity of individual nodes. Root formation in node culture was associated with formation of long multi-nodal axillary shoots, and so higher rooting of shoots from the cotyledonary node or first true-leaf node was associated with higher shoot proliferation. However, all nodes were equally capable of shoot proliferation in organogenic culture (with 2.2 μM benzyladenine), where rooting and rapid stem elongation did not occur. Most shoots (61–100%) from both node culture and organogenic culture were converted to plantlets, with plantlet conversion and primary root number not differing significantly among explant node positions. The strong topophysic effect in node culture, combined with the lack of a topophysic effect in organogenic culture, provides for an optimised clonal propagation system based on segregation of nodes from the same seedling into separate node and organogenic culture pathways.  相似文献   

18.
In vitro clonal propagation of Capparis decidua was achieved using nodal explants from mature trees, and cotyledonary node, cotyledon and hypocotyl explants taken from the seedlings. Explants cultured on MS medium supplemented with BAP showed differentiation of multiple shoots and shoot buds in 4–5 weeks in the primary cultures. The medium with BAP (5 mg/l) was the best for shoot bud proliferation from the nodal as well as seedling explant. Shoot multiplication was best on cotyledonary node. In the nodal explants shoot multiplication was best on medium supplemented with 5 mg/l BAP and after second subculturing further multiplication of shoot buds was highest on the medium containing 3 mg/l BAP. Shoots were separated from mother cultures in each subculturing for rooting. Rooting was best achieved using 1 mg/l IBA in the medium. Rooted plantlets were transferred td earthen pots with garden soil and peat moss mixture.  相似文献   

19.
叉蕊薯蓣的微繁殖及微型薯蓣的离体诱导   总被引:18,自引:1,他引:17  
叉蕊薯蓣茎节在培养基MS BA1.0mg/L NAA1.0mg/L或MS KT2.0mg/L NAA0.5mg/L上繁殖效率最高,继代培养可持续旺盛增殖.80g/L蔗糖的MS BA80mg/L为诱导离体茎段形成微型薯蓣的适宜培养基.  相似文献   

20.
改良菜心离体培养植株再生体系的研究(简报)   总被引:4,自引:0,他引:4  
This investigation has developed an efficient and fast method for plant regeneration from petiole of cotyledon explants of Brassica campestris L. subsp. chinensis Makino var. parachinensis Tsen et Lee. A medium was designed for B. campestris subsp. chinensis var. parachinensis to obtain the high frequency of shoot regeneration, which contained BAP 2 mg/L, NAA 0.75-1.0 mgL and 7.5 mg/L AgNO3 solution to the half of NH4+ concentration's MS basic medium. 60 mL/L coconut milk were added to all of media. In this method, frequency of shoot regeneration of "youqing caixin" reached as high as 91.2% and the number of shoots per explant reached as high as 4.7 plants. The result showed that there was a positive correlation between frequency of shoot regeneration and number of shoots per explant. The little shoots could be observed five days after inoculation and were formed directly. The inducing rate of roots of the shoots reached as high as 100% and the rate of viability of transferred mature plant reached higher than 95%. The regeneration period from petiole with cotyledon to a seedling was shorten to about 49 days. Factors influencing in vitro explant regeneration were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号