首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In this study I show that a sexual difference in timing of the post-nuptial moult frequently occurs in a sub-arctic population of the pied flycatcher.
2. Most pairs started to moult after fledging of their young, but an overlap between moult and nestling feeding was more common among males than females. This sexual difference in moult–breeding overlap increased as the season progressed.
3. Females with moult–breeding overlap laid smaller clutches than non-moulting females. In addition to many other factors explaining the seasonal decline in clutch size that has been found for many bird species, it is possible that females adjust their clutch size according to their own risk of having to start moulting while still feeding the nestlings.
4. Nearly 24% of the females were deserted by their mate before the young fledged. Desertion imposed no fitness costs to males in terms of fledgling number or quality, suggesting that their females managed to adjust their care for the loss of male care.
5. Deserted females started moulting later than aided females, which may be a result of their increased reproductive investment.
6. Deserted females and females aided by moulting males had lower survival rate than females aided by non-moulting males.
7. These findings suggests that delayed moult may be one mechanism causing inter-annual reproductive costs in birds, and the relationship between a sexual difference in timing of moult and its fitness consequences may be widespread among passerine birds.  相似文献   

2.
We report the results of an expedition to a barnacle-goose (Branta leucopsis) breeding area in Kolokolkova Bay, west of the lower Pechora delta in northern Russia, undertaken in July 2002. In total, 6 breeding colonies were found within the study area, harbouring 1,324 nests. Mean clutch size was 2.77±0.10 but may have been underestimated because of nest predation. Nest predation was high and correlated with the density of breeding gulls, Larus. The 2002 season was relatively cold and peak hatch occurred late, on 14 July. More than 11,000 barnacle geese were found to moult in the area which, together with the large number of nests found, emphasises the importance of Kolokolkova Bay for barnacle geese. Adult barnacle geese (341) were captured, marked and measured during their annual wing moult. Birds with broods started to moult approximately 2 weeks later than non- and failed breeders. Weight loss during moult was 3 times as rapid as reported for barnacle geese breeding in the Baltic, and a large cost of reproduction seemed to exist in the form of reduced body weight at the onset of moult for birds leading broods. Work in the area will continue over the coming years to document and explain the differences in major life-history parameters, dynamics and environmental effects between arctic and temperate breeding barnacle-goose populations.  相似文献   

3.
Events in the life cycle of migrant birds are generally time‐constrained. Moult, together with breeding and migration, is the most energetically demanding annual cycle stages, but it is the only stage that can be scheduled at different times of the year. However, it is still not fully understood what factors determine this scheduling. We compare the timing of primary feather moult in relation to breeding and migration between two populations of Eurasian golden plover Pluvialis apricaria, the continental population breeding in Scandinavia and in N Russia that migrates to the Netherlands and southern Europe, and the Icelandic population that migrates mainly to Ireland and western UK. Moult was studied at the breeding grounds (N Sweden, N Russia, Iceland) and at stopover and wintering sites (S Sweden, the Netherlands). In both populations, primary moult overlapped with incubation and chick rearing, and females started on average 9 d later than males. Icelandic plovers overlapped moult with incubation to a larger extent and stayed in the breeding grounds until primary moult was completed. In contrast, continental birds only moulted the first 5–7 primaries at the breeding grounds and completed moult in stopover and wintering areas, such as S Sweden and the Netherlands. This overlap, although rare in birds, can be understood from an annual cycle perspective. Icelandic plovers presumably need to initiate moult early in the season to be able to complete it at the breeding grounds. The latter is not possible for continental plovers as their breeding season is much shorter due to a harsher climate. Additionally, for this population, moulting all the primaries at the stopover/wintering site is also not possible as too little time would remain to prepare for cold‐spell movements. We conclude that environmental conditions and migration strategy affect the annual scheduling of primary feather moult in the Eurasian golden plover.  相似文献   

4.
In the annual cycle of migratory birds, temporal and energetic constraints can lead to carry‐over effects, in which performance in one life history stage affects later stages. Bar‐tailed godwits Limosa lapponica baueri, which achieve remarkably high pre‐migratory fuel loads, undertake the longest non‐stop migratory flights yet recorded, and breed during brief high‐latitude summers, may be particularly vulnerable to persistent effects of disruptions to their rigidly‐timed annual routines. Using three years of non‐breeding data in New Zealand, we asked how arrival timing after a non‐stop flight from Alaska (>11 000 km) affected an individual godwit's performance in subsequent flight feather moult, contour feather moults, and migratory departure. Late arrival led to later wing moult, but godwits partially compensated for delayed moult initiation by increasing moult rate and decreasing the total duration of moult. Delays in arrival and wing moult up to 34–37 d had no apparent effect on an individual's migratory departure or extent of breeding plumage at departure, both of which were extraordinarily consistent between years. Thus, ‘errors’ in timing early in the non‐breeding season were essentially corrected in New Zealand prior to spring migration. Variation in migration timing also had no apparent effect on an individual's likelihood of returning the following season. The bar‐tailed godwits’ rigid maintenance of plumage and spring migration schedules, coupled with high annual survival, imply a surprising degree of flexibility to address unforeseen circumstances in the annual cycle.  相似文献   

5.
《Ostrich》2013,84(3):573-576
Nothing has been published on the moult of the Fiery-necked Nightjar Caprimulgus pectoralis in Zimbabwe. However, most of the birds handled on Ranelia Farm, Cashel, during a study of nightjar breeding biology over four seasons, were examined for moult. Fiery-necked Nightjars were examined on over 70 occasions. Their annual moult occurs between late October and early March, commencing with the primaries, which moult descendantly. The secondaries, which moult ascendantly, follow after P5 has been shed, and so do the rectrices, which moult centrifugally, but R5 precedes R4. Body moult, which starts about the time that R1 is shed, progresses from the head across the neck to the rest of the dorsal plumage, and then over the throat and flanks to the ventral surface. The rictal bristles moult descendantly in time with the primaries. Several birds, some with primary moult scores as high as 18, had commenced moult while still tending young from the first brood, or incubating the eggs of a second, or replacement, clutch. The moult season overlaps the breeding season by about two months.  相似文献   

6.
Shifts in reproductive phenology due to climate change have been well documented in many species but how, within the same species, other annual cycle stages (e.g. moult, migration) shift relative to the timing of breeding has rarely been studied. When stages shift at different rates, the interval between stages may change resulting in overlaps, and as each stage is energetically demanding, these overlaps may have negative fitness consequences. We used long‐term data of a population of European pied flycatchers (Ficedula hypoleuca) to investigate phenological shifts in three annual cycle stages: spring migration (arrival dates), breeding (egg‐laying and hatching dates) and the onset of postbreeding moult. We found different advancements in the timing of breeding compared with moult (moult advances faster) and no advancement in arrival dates. To understand these differential shifts, we explored which temperatures best explain the year‐to‐year variation in the timing of these stages, and show that they respond differently to temperature increases in the Netherlands, causing the intervals between arrival and breeding and between breeding and moult to decrease. Next, we tested the fitness consequences of these shortened intervals. We found no effect on clutch size, but the probability of a fledged chick to recruit increased with a shorter arrival‐breeding interval (earlier breeding). Finally, mark–recapture analyses did not detect an effect of shortened intervals on adult survival. Our results suggest that the advancement of breeding allows more time for fledgling development, increasing their probability to recruit. This may incur costs to other parts of the annual cycle, but, despite the shorter intervals, there was no effect on adult survival. Our results show that to fully understand the consequences of climate change, it is necessary to look carefully at different annual cycle stages, especially for organisms with complex cycles, such as migratory birds.  相似文献   

7.
Long-distance migratory passerine birds are generally time constrained by reproduction and moult, which need to be completed before migration. Breeding and post-nuptial moult may overlap especially under time-constrained conditions (northern latitudes). Here, we analysed the timing of adult moult in relation to latitude, timing of breeding and reproductive effort in pied flycatchers (Ficedula hypoleuca) breeding in four widely separated populations (40-68° N). In males but not females, the proportion of moulting birds while provisioning nestlings increased with increasing latitude. This may suggest that a moult-breeding overlap is a strategy employed by male pied flycatchers to adjust to the short breeding season at northern latitudes. However, the moult-breeding overlap was more pronounced among males in the southernmost study population (Spain). In this population, males may decide not to invest more in reproduction, and start moulting at earlier breeding stage than in northern populations,or, alternatively, birds in the Mediterranean region are time constrained by the hot and dry summer. The trade-off between breeding and post-nuptial moult may be more important in some populations than in others, depending on the latitude of the breeding site. Our results show that a moult-breeding overlap imposes a fitness cost on males in terms of fecundity and breeding success.  相似文献   

8.
Christer Hemborg 《Ibis》1999,141(2):226-232
During five breeding seasons, the timing of breeding and moulting was studied in the Pied Flycatcher Ficedula hypoleuca. In central Sweden, on average 67% of the males and 41% of the females started moulting before the young fledged. The proportion of individuals with an overlap between breeding and moulting varied considerably between years, with the highest proportion of moulting males being recorded in the year when the females started egg-laying on the latest date. Despite a large annual variation in the proportion of individuals showing a moult/breeding overlap, the duration of this overlap varied insignificantly between years. The onset of moult in males seemed to be related to both calendar date and timing of the current breeding attempt. Most females postponed their moult until just before or just after the fledging of their young, independent of calendar date. There was no significant relationship between male and female moult scores and nestling weight at fledging or fledging success of their brood. Thus, in long-distance migrants such as Pied Flycatchers, it may be adaptive to have some overlap between reproduction and moult, but there seems to be a limit to how early in the breeding cycle they are able to start moulting.  相似文献   

9.
Breeding periodicity allows organisms to synchronise breeding attempts with the most favourable ecological conditions under which to raise offspring. For most animal species, ecological conditions vary seasonally and usually impose an annual breeding schedule on their populations; sub-annual breeding schedules will be rare. We use a 16-year dataset of breeding attempts by a tropical seabird, the sooty tern (Onychoprion fuscatus), on Ascension Island to provide new insights about this classical example of a population of sub-annually breeding birds that was first documented in studies 60 years previously on the same island. We confirm that the breeding interval of this population has remained consistently sub-annual. By ringing >17000 birds and re-capturing a large sample of them at equivalent breeding stages in subsequent seasons, we reveal for the first time that many individual birds also consistently breed sub-annually (i.e. that sub-annual breeding is an individual as well as a population breeding strategy). Ascension Island sooty terns appear to reduce their courtship phase markedly compared with conspecifics breeding elsewhere. Our results provide rare insights into the ecological and physiological drivers of breeding periodicity, indicating that reduction of the annual cycle to just two life-history stages, breeding and moult, is a viable life-history strategy and that moult may determine the minimum time between breeding attempts.  相似文献   

10.
Within three decades, the barnacle goose population wintering on the European mainland has dramatically increased in numbers and extended its breeding range. The expansion has occurred both within the Arctic as well as by the colonization of temperate areas. Studies of performance of individuals in expanding populations provide information on how well species can adapt to novel environments and global warming. We, therefore, studied the availability of high quality food as well as timing of reproduction, wing moult, fledgling production and postfledging survival of individually marked geese in three recently established populations: one Arctic (Barents Sea) and two temperate (Baltic, North Sea). In the Barents Sea population, timing of hatching was synchronized with the peak in food availability and there was strong stabilizing selection. Although birds in the Baltic and North Sea populations bred 6–7 weeks earlier than Arctic birds, timing of hatching was late in relation to the peak in food availability, and there was moderate to strong directional selection for early breeding. In the Baltic, absolute timing of egg laying advanced considerably over the 20‐year study period, but advanced little relative to spring phenology, and directional selection on lay date increased over time. Wing moult of adults started only 2–4 weeks earlier in the temperate populations than in the Arctic. Synchronization between fledging of young and end of wing moult decreased in the temperate populations. Arctic‐breeding geese may gradually accumulate body stores from the food they encounter during spring migration, which allows them to breed relatively early and their young to use the peak of the Arctic food resources. By contrast, temperate‐breeding birds are not able to acquire adequate body stores from local resources early enough, that is before the quality of food for their young starts to decrease. When global temperatures continue to rise, Arctic‐breeding barnacle geese might encounter similar problems.  相似文献   

11.
《Ostrich》2013,84(3):555-559
The timing of primary moult of adult Red-billed Queleas Quelea quelea, captured as they were completing an unusually late breeding attempt at Francistown, northern Botswana, in June 2004, was compared with the timing of moult of birds breeding earlier in the season in north-west Botswana during two earlier years, 1971 and 1972. Differences between years in the dates when local colonies finished breeding (mid-March to late June) and between two localities in the same year (mid-March and late May) were matched by corresponding differences in the estimated dates of moult onset, ranging from mid-April to mid-June. Flexibility in the timing of moult among Red-billed Queleas in southern Africa evidently enables birds to take advantage of unusually late breeding opportunities by delaying moult onset and overlapping moult and breeding at the end of the nesting cycle. Such flexibility may also include moult interruption to permit late breeding, although its incidence in southern Africa is apparently low.  相似文献   

12.
Organisms that reproduce at high latitudes are assumed to have evolved several adaptations to the short summer. For birds, and especially for long-distance migrants, there is a time constraint because both reproduction and moult must be completed before autumn migration. It has therefore been assumed that birds at northern latitudes must initiate their moult during reproduction more often than birds at low latitudes. To investigate how passerine birds breeding at different latitudes allocate their time between reproduction and moult, we compared timing of these activities during three consecutive breeding seasons in three widely separated populations of the pied flycatcher Ficedula hypoleuca. Our results show that the frequency of individuals with moult-breeding overlap, and moult initiation in relation to breeding stage, varied considerably among populations and years. In all three populations, female moult initiation was restricted to the late nestling period. The males had a more pronounced moult-breeding overlap than the females, but its duration was similar in all three study areas. Thus, there was no evidence for a more pronounced moult-breeding overlap at high compared with low latitudes. These results suggest that pied flycatchers sometimes accept a moult-breeding overlap, but that the time gained by having too extensive an overlap between reproduction and moult does not outweigh the associated costs. Long-distance migrants breeding at northern latitudes apparently experience a trade-off between reproduction and somatic investment during moult. We therefore suggest that a pronounced moult-breeding overlap is not a typical strategy used by long-distance migrants to adjust to the short breeding season at northern latitudes. Received: 7 May 1998 / Accepted: 24 August 1998  相似文献   

13.
Many migratory birds start prebreeding moult and premigratory fuelling some months before the breeding season and face severe time constraints, while travelling up to 15,000 km between non-breeding and breeding grounds. Shorebirds typically leave Southern Hemisphere non-breeding areas over a 3-4 week period, but whether they benefit from interannually consistent timing of departure is unknown. Here, I show that individual bar-tailed godwits (Limosa limosa baueri) from New Zealand are highly consistent in their migratory scheduling. Most birds left within the same week each year (between-year repeatability, r, of 0.83) and adult males, which moult into a bright breeding plumage, were also highly repeatable in the extent of their prebreeding moult (r=0.86). This is consistent with the hypothesis that birds have individually optimized migration schedules. Within adult males, but not females, smaller birds tended to migrate earlier than large birds. Whether this reflects differences in size-related migration speed, optimal breeding time at different sites or size-related natural or sexual selection pressures, remains unknown.  相似文献   

14.
This paper reviews information from ecological and physiological studies to assess how extrinsic factors can modulate intrinsic physiological processes. The annual cycle of birds is made up of a sequence of life-history stages: breeding, moult and migration. Each stage has evolved to occur at the optimum time and to last for the whole duration of time available. Some species have predictable breeding seasons, others are more flexible and some breed opportunistically in response to unpredictable food availability. Photoperiod is the principal environmental cue used to time each stage, allowing birds to adapt their physiology in advance of predictable environmental changes. Physiological (neuroendocrine and endocrine) plasticity allows non-photoperiodic cues to modulate timing to enable individuals to cope with, and benefit from, short-term environmental variability. Although the timing and duration of the period of full gonadal maturation is principally controlled by photoperiod, non-photoperiodic cues, such as temperature, rainfall or food availability, could potentially modulate the exact time of breeding either by fine-tuning the time of egg-laying within the period of full gonadal maturity or, more fundamentally, by modulating gonadal maturation and/or regression. The timing of gonadal regression affects the time of the start of moult, which in turn may affect the duration of the moult. There are many areas of uncertainty. Future integrated studies are required to assess the scope for flexibility in life-history strategies as this will have a critical bearing on whether birds can adapt sufficiently rapidly to anthropogenic environmental changes, in particular climate change.  相似文献   

15.
Data from 3659 waders of 23 species live-trapped in the years 1971-73 on the Atlantic coast of Morocco during the period of autumn moult and migration are analysed to estimate duration and timing of primary moult. Common Sandpiper was the only species to moult primaries in its first autumn (unless published ageing criteria are incorrect). Several species showed a low incidence of arrested primary moult and a higher incidence was observed in Ringed, Kentish and Grey Plovers. This is discussed in relation to breeding and migration. Similar rates of primary feather replacement relative to specific moult duration were observed in all species for which information was available. Comparisons between species and with published studies showed that variations in rate of moulting between species and between different geographical populations of the same species were largely due to differences in feather growth rate rather than in the numbers of primaries concurrently in growth. Variations in rate between individuals of the same population were achieved, at least in the first part of moult, by differences in feather dropping rate resulting in differences in the numbers of primaries growing concurrently. The timing and duration of moult in different populations and differences between breeding and non-breeding components were closely related to the requirements of other annual cycle activities, notably breeding and migration. Non-breeding birds summering in Morocco had started moult early. Locally breeding birds had an early start to a fairly slow moult which overlapped with breeding and which in some cases passed through an arrested stage. Birds breeding in cold temperate and arctic regions and wintering in Morocco moulted in a short time soon after arrival. In some cases, notably in Ringed Plovers, birds had commenced moulting on the breeding grounds and arrested moult during migration. Most Redshank and possibly Dunlin migrated in active wing moult. The fastest primary moult was achieved by high arctic breeding birds, Curlew Sandpiper and possibly Little Stint, which stopped to moult in Morocco before moving on to wintering areas further south. This situation is contrasted with that of populations of these two and other species wintering in the southern hemisphere where moult occurs over an extended period during the northern winter.  相似文献   

16.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

17.
Higher temperatures resulting from climate change have led to predictions that the duration of the breeding season of many temperate bird species may be changing. However, the extent to which breeding seasons can be altered will also depend on the degree of flexibility in processes occurring at other points in the annual cycle. In particular, plasticity in the timing of post‐breeding moult (PBM) could facilitate changes in the timing of key events throughout the annual cycle, but little is known about the level of within‐ and between‐species plasticity in PBM. As part of the British Trust for Ornithology (BTO) Ringing Scheme, many ringers routinely record moult scores of flight feathers, and these can be used to provide information on the annual progression of PBM for a range of species. Here we use ringing data to investigate patterns of PBM in 15 passerines, as well as data from the BTO Nest Record Scheme to relate these differences to the timing of breeding of these species across the UK. We find considerable variation in both the mean start (19 May–29 July) and duration (66–111 days) of PBM between species, but find no evidence that species starting PBM later in the season complete it any faster. However, there is considerable within‐species variation in PBM, particularly for multi‐brooded species; PBM starts later and is completed in less time when the duration of the breeding season (difference between first and last nests) is longer. This implies that a later end to breeding can be compensated for by faster PBM, and that advances in breeding could lead to earlier and slower PBM. Our findings suggest that adaptation of PBM in response to climate‐mediated changes in the timing and duration of the breeding season is possible. However, the requirement to complete PBM prior to migration or the onset of winter might constrain the extent to which breeding seasons can lengthen, especially for later nesting species.  相似文献   

18.
A comparative study of migratory blackcaps from Central Europe (S. Germany) and resident conspecifics from the Cape Verde Islands revealed marked differences in annual periodicity. European blackcaps, with one breeding season per year, have a single-peaked annual gonadal cycle whereas the African birds with two breeding seasons per annum have a two-peaked gonadal cycle. The European birds go through a post-juvenile moult (partial moult in first-year birds) or postnuptial moult (complete moult in adults) and, in addition, through a partial winter moult (all age classes) before the next gonadal cycle and breeding season. Their African conspecifics, on the other hand, have only one moult between two gonadal cycles, the summer moult also being the complete one. Here, we demonstrate that the additional winter moult of European blackcaps is heritable and can be transmitted into interpopulational hybrids. When blackcaps from S. Germany and the Cape Verdes were cross-bred, 16 out of 21 hybrids displayed the partial winter moult of their German parents. The fact that not all but only 76% of the F1 hybrids passed through this moult favours the idea that its incidence is controlled by a polygenic rather than a single locus system. Most likely winter moult in European blackcaps represents a threshold character as several migratory features do.  相似文献   

19.
Tropical birds lay smaller clutches than birds breeding in temperate regions and care for their young for longer. We develop a model in which birds choose when and how often to breed and their clutch size, depending on their foraging ability and the food availability. The food supply is density dependent. Seasonal environments necessarily have a high food peak in summer; in winter, food levels drop below those characteristic of constant environments. A bird that cannot balance its energy needs during a week dies of starvation. If adult predation is negligible, birds in low seasonal environments are constrained by low food during breeding seasons, whereas birds in high seasonal environments die during the winter. Low food seasonality selects for small clutch sizes, long parental care times, greater age at first breeding, and high juvenile survival. The inclusion of adult predation has no major effect on any life-history variables. However, increased nest predation reduces clutch size. The same trends with seasonality are also found in a version of the model that includes a condition variable. Our results show that seasonal changes in food supply are sufficient to explain the observed trends in clutch size, care times, and age at first breeding.  相似文献   

20.
Population limitation models of migratory birds have sought to include impacts from events across the full annual cycle. Previous work has shown that events occurring in winter result in some individuals transitioning to the breeding grounds earlier or in better physical condition than others, thereby affecting reproductive success (carry‐over effects). However, evidence for carry‐over effects from breeding to wintering grounds has been shown less often. We used feather corticosterone (CORTf) levels of the migratory Louisiana Waterthrush Parkesia motacilla as a measure of the physiological state of birds at the time of moult on the breeding territory to investigate whether carry‐over effects provide linkages across the annual cycle of this stream‐obligate bird. We show that birds arriving on wintering grounds with lower CORTf scores, indicating reduced energetic challenges or stressors at the time of moult, occupied higher quality territories, and that these birds then achieved a better body condition during the overwinter period. Body condition, in turn, was important in determining whether adult birds returned the following winter, with birds in better condition returning at higher rates. Together these data suggest a carry‐over effect from the breeding grounds to the wintering grounds that is further extended with respect to annual return rates. Very few other studies have linked conditions during the previous breeding season with latent effects during the subsequent overwintering period or with annual survival. This study shows that the effects of variation in energetic challenges or stressors can potentially carry over from the natal stream and accumulate over more than one life‐history period before being manifested in reduced survival. This is of particular relevance to models of population limitation in migratory birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号