首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

2.
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, a precursor of triacylglycerol. In the intestine, MGAT plays a major role in the absorption of dietary fat by catalyzing the resynthesis of triacylglycerol in enterocytes. This resynthesis is required for the assembly of lipoproteins that transport absorbed fat to other tissues. Despite intense efforts, a gene encoding an intestinal MGAT has not been found. Previously, we identified a gene encoding MGAT1, which in mice is expressed in the stomach, kidney, adipose tissue, and liver but not in the intestine. We now report the identification of homologous genes in humans and mice encoding MGAT2. Expression of the MGAT2 cDNA in either insect or mammalian cells markedly increased MGAT activity in cell membranes. MGAT activity was proportional to the level of MGAT2 protein expressed, and the amount of diacylglycerol produced depended on the concentration of MGAT substrates (fatty acyl CoA or monoacylglycerol). In humans, the MGAT2 gene is highly expressed in the small intestine, liver, stomach, kidney, colon, and white adipose tissue; in mice, it is expressed predominantly in the small intestine. The discovery of the MGAT2 gene will facilitate studies to determine the functional role of MGAT2 in fat absorption in the intestine and to determine whether blocking MGAT activity in enterocytes is a feasible approach to inhibit fat absorption and treat obesity.  相似文献   

3.
Jerboa (Jaculus orientalis) is a deep hibernator originating from sub-desert highlands and represents an excellent model to help to understand the incidence of seasonal variations of food intake and of body as well as environmental temperatures on lipid metabolism. In jerboa, hibernation processes are characterized by changes in the size of mitochondria, the number of peroxisomes in liver and in the expression of enzymes linked to fatty acid metabolism. In liver and kidney, cold acclimatization shows an opposite effect on the activities of the mitochondrial acyl-CoA dehydrogenase (-50%) and the peroxisomal acyl-CoA oxidase (AOX) (+50%), while in brown and white adipose tissues, both activities are decreased down to 85%. These enzymes activities are subject to a strong induction in brown and in white adipose tissue (3.4- to 7.5-fold, respectively) during the hibernation period which is characterized by a low body temperature (around 10 degrees C) and by starvation. Expression level of AOX mRNA and protein are increased during both pre-hibernation and hibernation periods. Unexpectedly, treatment with ciprofibrate, a hypolipemic agent, deeply affects lipolysis in brown adipose tissue by increasing acyl-CoA dehydrogenase activity (3.4-fold), both AOX activity and mRNA levels (2.8- and 3.8-fold, respectively) during pre-hibernation. Therefore, during pre-hibernation acclimatization, there is a negative regulation of fatty acid degradation allowing to accumulate a lipid stock which is later degraded during the hibernation period (starvation) due to a positive regulation of enzymes providing the required energy for animal survival.  相似文献   

4.
1. Adipocytes were isolated from the interscapular brown fat and the epididymal white fat of normal, streptozotocin-diabetic and hypothyroid rats. 2. Measurements were made of the maximum rate of triacylglycerol synthesis by monitoring the incorporation of [U-14C]glucose into acylglycerol glycerol in the presence of palmitate (1 mM) and insulin (4 nM) and of the activities of the following triacylglycerol-synthesizing enzymes: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), dihydroxyacetonephosphate acyltransferase (DHAPAT), monoacylglycerol phosphate acyltransferase (MGPAT), Mg2+-dependent phosphatidate phosphohydrolase (PPH) and diacylglycerol acyltransferase (DGAT). 3. FAS activity in brown adipocytes was predominantly localized in the mitochondrial fraction, whereas a microsomal localization of this enzyme predominated in white adipocytes. Subcellular distributions of the other enzyme activities in brown adipocytes were similar to those shown previously with white adipocytes [Saggerson, Carpenter, Cheng & Sooranna (1980) Biochem. J. 190, 183-189]. 4. Relative to cell DNA, brown adipocytes had lower activities of triacylglycerol-synthesizing enzymes and showed lower rates of metabolic flux into acylglycerols than did white adipocytes isolated from the same animals. 5. Diabetes decreased both metabolic flux into acylglycerols and the activities of triacylglycerol-synthesizing enzymes in white adipocytes. By contrast, although diabetes decreased metabolic flux into brown-adipocyte acylglycerols by 80%, there were no decreases in the activities of triacylglycerol-synthesizing enzymes, and the activity of PPH was significantly increased. 6. Hypothyroidism increased metabolic flux into acylglycerols in both cell types, and increased activities of all triacylglycerol-synthesizing enzymes in brown adipocytes. By contrast, in white adipocytes, although hypothyroidism increased the activities of FAS, microsomal GPAT and DGAT, this condition decreased the activities of mitochondrial GPAT and PPH. 7. It was calculated that the maximum capabilities for fatty acid oxidation and esterification are approximately equal in brown adipocytes. In white adipocytes esterification is predominant by approx. 100-fold. 8. Diabetes almost abolished incorporation of [U-14C]glucose into fatty acids in both adipocyte types. Hypothyroidism increased fatty acid synthesis in white and brown adipocytes by 50% and 1000% respectively.  相似文献   

5.
Microsomal monoacyglycerol acyltransferase is a developmentally expressed enzyme that catalyzes the synthesis of sn-1,2-diacylglycerol from sn-2-monoacylglycerol and palmitoyl-CoA. The activity is present in liver from fetal and suckling rats but is absent in the adult. In order to obtain a stable permanent cell line that expresses this activity, Fao rat hepatoma cells and hepatocytes from 8-day-old baby rats were hybridized and clones were selected. Two hybrids (HA1 and HA7) expressed monoacylglycerol acyltransferase activity. Like fetal hepatocytes, but unlike hepatocytes from postnatal rats, the HA cells had high rates of [14C]acetate incorporation into glycerolipids, cholesterol, and cholesteryl esters, and they secreted triacylglycerol into the media. Monoacylglycerol acyltransferase specific activity increased 2.5-fold as the cells divided in culture, suggesting growth-dependent regulation. The specific activities of glycerol-P acyltransferase, the committed step of the microsomal pathway of glycerolipid synthesis, and diacylglycerol acyltransferase, the activity unique to triacylglycerol biosynthesis, were comparable to the levels of the corresponding activities in fetal hepatocytes. Addition of insulin or dexamethasone to the media increased the incorporation of [14C]oleate into triacyglycerol about 1.7-fold within 2 h, but had little effect on [14C]oleate incorporation into phospholipid. These hormonally responsive rat-hepatoma/hepatocyte hybrids reflect the fetal stage of hepatocyte development in five major aspects of lipid metabolism: sterol, fatty acid, and triacylglycerol biosynthesis, glycerolipid secretion, and the presence of the developmentally expressed monoacylglycerol pathway.  相似文献   

6.
Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity   总被引:2,自引:0,他引:2  
Triglyceride synthesis in most mammalian tissues involves the sequential addition of fatty acids to a glycerol backbone, with unique enzymes required to catalyze each acylation step. Acylation at the sn-2 position requires 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) activity. To date, seven Agpat genes have been identified based on activity and/or sequence similarity, but their physiological functions have not been well established. We have generated a mouse model deficient in AGPAT6, which is normally expressed at high levels in brown adipose tissue (BAT), white adipose tissue (WAT), and liver. Agpat6-deficient mice exhibit a 25% reduction in body weight and resistance to both diet-induced and genetically induced obesity. The reduced body weight is associated with increased energy expenditure, reduced triglyceride accumulation in BAT and WAT, reduced white adipocyte size, and lack of adipose tissue in the subdermal region. In addition, the fatty acid composition of triacylglycerol, diacylglycerol, and phospholipid is altered, with proportionally greater polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Thus, Agpat6 plays a unique role in determining triglyceride content and composition in adipose tissue and liver that cannot be compensated by other members of the Agpat family.  相似文献   

7.
Microsomal membrane preparations from the immature cotyledons of safflower (Carthamus tinctorius) catalysed the interconversion of the neutral lipids, mono-, di-, and triacylglycerol. Membranes were incubated with neutral lipid substrates, 14C-labelled either in the acyl or glycerol moiety, and the incorporation of radioactivity into other complex lipids determined. It was clear that diacylglycerol gave rise to triacylglycerol and monoacylglycerol as well as phosphatidylcholine. Radioactivity from added [14C] triacylglycerol was to a small extent transferred to diacylglycerol whereas added [14C] monoacylglycerol was rapidly converted to diacylglycerols and triacylglycerols. The formation of triacylglycerol from diacylglycerol occurred in the absence of acyl-CoA and hence did not involve diacylglycerol acyltransferase (DAGAT) activity. Monoacylglycerol was not esterified by direct acylation from acyl-CoA. We propose that these reactions were catalyzed by a diacylglycerol: diacylglycerol transacylase which yielded triacylglycerol and monoacylglycerol, the reaction being freely reversible. The specific activity of the transacylase was some 25% of the diacylglycerol acyltransferase activity and, hence, during the net accumulation of oil, substantial newly formed triacylglycerol equilibrated with the diacylglycerol pool. In its turn the diacylglycerol rapidly interconverted with phosphatidylcholine, the major complex lipid substrate for Δ12 desaturation. Hence, the oleate from triacylglycerols entering phosphatidylcholine via this route could be further desaturated to linoleate. A model is presented which reconciles these observations with our current understanding of fatty acid desaturation in phosphatidylcholine and oil assembly in oleaceous seeds. Received: 8 November 1996 / Accepted: 5 February 1997  相似文献   

8.
9.
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.  相似文献   

10.
Summary Adult male Richardson's ground squirrels,Spermophilus richardsonii, were estimated to have emerged from hibernation in late February to early March, and adult females in mid to late March. Half of the females trapped in late March were not pregnant, as against 10% after that time. In late March males and all females had similar WAT (white adipose tissue) deposits. Between late March and early June, WAT deposits in males increased from 14 g to 64 g (a rate of 5.6 g per week). In non-parous females WAT deposits increased from 13 g to 48 g from late March to late May (4.2 g per week). Fat deposits decreased during lactation but thereafter increased from 8 g to 29 g (a rate of 6.0 g per week) between early May and early June. In males the rate of fatty acid synthesis in BAT (brown adipose tissue), liver and WAT did not change from late March to late May, and rates in the corresponding tissues of non-pregnant females were similar to those in males. Fatty acid synthesis decreased during late pregnancy and lactation. After lactation, the rate of fatty acid synthesis in all tissues increased to that in males and non-pregnant females. Males initiated fattening 5–7 weeks earlier than females. It is concluded that compared with adult males, the later immergence of adult female Richardson's ground squirrels into hibernation is due primarily to later initiation of fattening and less to differences in rate of lipid synthesis after the reproductive period. Rates of fatty acid synthesis in liver and BAT were several times greater than that in WAT. The former tissues may contribute fatty acids for prehibernatory fattening.Abbreviations BAT brown adipose tissue - WAT white adipose tissue  相似文献   

11.
1. The effect of tumour burden on lipid metabolism was examined in virgin, lactating and litter-removed rats. 2. No differences in food intake or plasma insulin concentrations were observed between control animals and those bearing the Walker-256 carcinoma (3-5% of body wt.) in any group studied. 3. In virgin tumour-bearing animals, there was a significant increase in liver mass, blood glucose and lactate, and plasma triacylglycerol; the rate of oxidation of oral [14C]lipid to 14CO2 was diminished, and parametrial white adipose tissue accumulated less [14C]lipid compared with pair-fed controls. 4. These findings were accompanied by increased accumulation of lipid in plasma and decreased white-adipose-tissue lipoprotein lipase activity. 5. In lactating animals, tumour burden had little effect on the accompanying hyperphagia or on pup weight gain; tissue lipogenesis was unaffected, as was tissue [14C]lipid accumulation, plasma [triacylglycerol] and white-adipose-tissue and mammary-gland lipoprotein lipase activity. 6. On removal (24 h) of the litter, the presence of the tumour resulted in decreased rates of lipogenesis in the carcass, liver and white and brown adipose tissue, decreased [14C]lipid accumulation in white adipose tissue, but increased accumulation in plasma and liver, increased plasma [triacylglycerol] and decreased lipoprotein lipase activity in white adipose tissue. 7. The rate of triacylglycerol/fatty acid substrate cycling was significantly decreased in white adipose tissue of virgin and litter-removed rats bearing the tumour, but not in lactating animals. 8. These results demonstrate no functional impairment of lactation, despite the presence of tumour, and the relative resistance of the lactating mammary gland to the disturbance of lipid metabolism that occurs in white adipose tissue of non-lactating rats with tumour burden.  相似文献   

12.
Hepatic monoacylglycerol acyltransferase is expressed during the perinatal period in rats and guinea pigs and appears to be related temporally to the availability of fatty acids and to the development of hepatic steatosis. In order to determine when monoacylglycerol acyltransferase activity is expressed in an avian species, its ontogeny was investigated in chick liver total particulate preparations. In livers from 11- to 21-day-old chick embryos, monoacylglycerol acyltransferase specific activity was 34.5 +/- 8.1 nmol/min per mg of total particulate protein. The specific activity decreased 93% to 2.6 +/- 1.3 nmol/min per mg by the 6th day after hatching. The specific activities of fatty acid CoA ligase, diacylglycerol acyltransferase, and microsomal and mitochondrial glycerol-P acyltransferases changed comparatively little during this time period. In the embryos, the monoacylglycerol acyltransferase activity per liver rose 28-fold between the 11th and 21st day, corresponding exactly to the increase in liver total particulate protein during this time. Monoacylglycerol acyltransferase activity in other tissues was 25- to 115-fold lower than observed in liver. Optimal activity was measured using 25 microM palmitoyl-CoA and 50 microM sn-2-monooleoylglycerol. The activity with the 1- and 2-monooleoylglycerol ethers and 1-monooleoylglycerol was very low. In contrast to microsomes from rat liver, about 70% of the product with the 1- and 2-monooleoylglycerol ethers was triradylglycerol, suggesting that the diacylglycerol acyltransferase from chick liver can acylate acyl, alkylglycerols. The activity with sn-2-monooleoylglycerol amide was 12.5% of that observed with the corresponding 2-monooleoylglycerol suggesting that the ester bond is important; the 1-monooleoylglycerol amide was not a substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms identified through sequence homology, but the enzyme activity for AGPAT6 has not been confirmed. We found that in liver and brown adipose tissue from Agpat6-deficient (Agpat6(-/-)) mice, N-ethylmaleimide (NEM)-sensitive GPAT specific activity was 65% lower than in tissues from wild-type mice, but AGPAT specific activity was similar. Overexpression of Agpat6 in Cos-7 cells increased an NEM-sensitive GPAT specific activity, but AGPAT specific activity was not increased. Agpat6 and Gpat1 overexpression in Cos-7 cells increased the incorporation of [(14)C]oleate into diacylglycerol (DAG) or into DAG and TAG, respectively, suggesting that the lysophosphatidic acid, phosphatidic acid, and DAG intermediates initiated by each of these isoforms lie in different cellular pools. Together, these data show that "Agpat6(-/-) mice" are actually deficient in a novel NEM-sensitive GPAT, GPAT4, and indicate that the alterations in lipid metabolism in adipose tissue, liver, and mammary epithelium of these mice are attributable to the absence of GPAT4.  相似文献   

14.
Summary The physiological effects of the pancreatic peptides somatostatin-14 and somatostatin-25 on lipid metabolism in rainbow trout were evaluated by in vitro culture of liver and adipose tissue. The culture medium was subsequently analyzed for glycerol and fatty acid content and triacylglycerol lipase activity was measured within the tissues. Both somatostatin-14 and somatostatin-25 stimulated hepatic fatty acid and glycerol release within 3 h after treatment. Liver triacylglycerol lipase activity was elevated following treatment with somatostatin-14 (76% above control) or somatostatin-25 (94% above control). Somatostatin-14 and somatostatin-25 also significantly stimulated the release of fatty acid and glycerol from adipose tissue. Triacylglycerol lipase activity in adipose tissue also was enhanced by both somatostatins. These results indicate that somatostatin-14 and somatostatin-25 directly stimulate the mobilization of triacylglycerol from liver and adipose tissue, suggesting that these peptides are important systemic modulators of lipid metabolism in fish.Abbreviations bw body weight - cAMP cyclic adenosine monophosphate - FA ratty acids - fw fresh weight - GLU glucagon - INS insulin - MS-222 tricaine-methane sulphonate - SS-14 somatostatin-14 - SS-25 somatostatin-25 - TG triacylglycerol  相似文献   

15.
The limiting role of diacylglycerol acyltransferase with respect to triacylglycerol synthesis in cultured rat hepatocytes was evaluated by following the inhibition of the overall synthetic flux by 2-bromooctanoate acting as an inhibitor of the diacylglycerol acyltransferase step. The flux-control coefficient of diacylglycerol acyltransferase in intact cultured hepatocytes amounted to 0.76 in the presence of saturating glycerol and either palmitate or oleate as the fatty acyl substrates. The flux-control coefficient of diacylglycerol acyltransferase in lysolecithin-permeabilized cultured hepatocytes amounted to 0.80 and 0.99 in the presence of saturating glycerol 3-phosphate and either palmitate or oleate as the fatty acyl substrate, respectively. Hence, triacylglycerol synthesis in liver cells under the experimental conditions employed is rate-limited by the diacylglycerol acyltransferase.  相似文献   

16.
The effect of dietary soybean phospholipid on the activities of hepatic triacylglycerol-synthesizing enzymes was compared with soybean oil in fasted-refed rats. Soybean oil at the dietary level corresponding to 20% but not at 5% fatty acid level (21.2 and 5.3% on weight bases, respectively) significantly decreased liver microsomal diacylglycerol acyltransferase activities measured with the endogenous diacylglycerol substrate. Dietary soybean phospholipid even at the dietary level corresponding to 2% fatty acids (3.4% on weight base) significantly decreased the acyltransferase activities measured with endogenous substrate. The dietary phospholipid further decreased the parameter as the dietary level increased, and at the 5% fatty acid level, it was lower than that obtained with soybean oil at 20% fatty acid level. Soybean oil and phospholipid decreased the diacylglycerol acyltransferase activities measured with the saturating concentration of exogenous dioleoylglycerol substrate only when the activities were expressed in terms of total activity (mumol/min per liver) but to much lesser extents. Dietary phospholipid compared to the oil profoundly decreased not only hepatic triacylglycerol but also microsomal diacylglycerol levels. It was indicated that the availability of microsomal diacylglycerol as the substrate for diacylglycerol transferase is the critical determinant in regulating hepatic triacylglycerol synthesis and concentration in this experimental situation. Alterations in the activities of microsomal glycerol 3-phosphate acyltransferase and of the enzymes in fatty acid synthesis could account for the phospholipid-dependent decrease in the microsomal concentration of this intermediate in triacylglycerol synthesis.  相似文献   

17.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

18.
The pathway for the synthesis of diacylglycerol in larval Manduca sexta midgut was studied. Fifth instar larvae were fed with [9,10–3H]–oleic acid–labeled triolein and the incorporation of the label into lipid intermediates was analyzed as a function of time. The results showed that the triacylglycerol was hydrolyzed to fatty acids and glycerol in the midgut lumen. In midgut tissue, the labeled fatty acids were rapidly incorporated into phosphatidic acid, diacylglycerol and triacylglycerol, but no significant labeling of monoacylglycerol was observed. Dual-labeling experiments were performed in order to characterize the kinetics of diacylglycerol biosynthesis in the midgut, its incorporation into hemolymph lipophorin and its clearance from hemolymph. The results were best described by a model in which the rate-limiting step in diacylglycerol biosynthesis was the uptake of fatty acid from the lumen of the midgut. Once in the cell the fatty acid was rapidly incorporated in phosphatidic acid and diacylglycerol. Diacylglycerol was converted to triacylglycerol or exported into hemolymph. The interconversion of diacylglycerol and triacylglycerol was fairly rapid, suggesting that triacylglycerol serves as a reservoir from which diacylglycerol can be produced. This mechanism permits the cell to maintain a low steady-state concentration of diacylglycerol and yet efficiently absorb fatty acids from the lumen of the midgut.  相似文献   

19.
Mammalian hibernation requires an extensive reorganization of metabolism that typically includes a greater than 95% reduction in metabolic rate, selective inhibition of many ATP-consuming metabolic activities and a change in fuel use to a primary dependence on the oxidation of lipid reserves. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in this reorganization. AMPK activity and the phosphorylation state of multiple downstream targets were assessed in five organs of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) comparing euthermic animals with squirrels in deep torpor. AMPK activity was increased 3-fold in white adipose tissue from hibernating ground squirrels compared with euthermic controls, but activation was not seen in liver, skeletal muscle, brown adipose tissue or brain. Immunoblotting with phospho-specific antibodies revealed an increase in phosphorylation of eukaryotic elongation factor-2 at the inactivating Thr56 site in white adipose tissue, liver and brain of hibernators, but not in other tissues. Acetyl-CoA carboxylase phosphorylation at the inactivating Ser79 site was markedly increased in brown adipose tissue from hibernators, but no change was seen in white adipose tissue. No change was seen in the level of phosphorylation of the Ser565 AMPK site of hormone-sensitive lipase in adipose tissues of hibernating animals. In conclusion, AMPK does not appear to participate in the metabolic re-organization and/or the metabolic rate depression that occurs during ground squirrel hibernation.  相似文献   

20.
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号