首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Groundwater and pore water inputs to the coastal zone   总被引:13,自引:0,他引:13  
Both terrestrial and marine forces drive underground fluid flows in the coastal zone. Hydraulic gradients on land result in groundwater seepage near shore and may contribute to flows further out on the shelf from confined aquifers. Marine processes such as tidal pumping and current-induced pressure gradients may induce interfacial fluid flow anywhere on the shelf where permeable sediments are present. The terrestrial and oceanic forces overlap spatially so measured fluid advection through coastal sediments may be a result of composite forcing. We thus define “submarine groundwater discharge” (SGD) as any and all flow of water on continental margins from the seabed to the coastal ocean, regardless of fluid composition or driving force. SGD is typically characterized by low specific flow rates that make detection and quantification difficult. However, because such flows occur over very large areas, the total flux is significant. Discharging fluids, whether derived from land or composed of re-circulated seawater, will react with sediment components. These reactions may increase substantially the concentrations of nutrients, carbon, and metals in the fluids. These fluids are thus a source of biogeochemically important constituents to the coastal ocean. Terrestrially-derived fluids represent a pathway for new material fluxes to the coastal zone. This may result in diffuse pollution in areas where contaminated groundwaters occur. This paper presents an historical context of SGD studies, defines the process in a form that is consistent with our current understanding of the driving forces as well as our assessment techniques, and reviews the estimated global fluxes and biogeochemical implications. We conclude that to fully characterize marine geochemical budgets, one must give due consideration to SGD. New methodologies, technologies, and modeling approaches are required to discriminate among the various forces that drive SGD and to evaluate these fluxes more precisely.  相似文献   

3.
Submarine Groundwater Discharge (SGD) has been frequently ignored as a nutrient source to marine ecosystems because it is difficult to identify and quantify. However, recent studies show its ubiquity and ecological importance to the coastal zone, particularly when associated with contaminated continental aquifers. The Ria Formosa is a coastal lagoon located in the south of Portugal and surrounded by an intensely farmed area. Following a 12-month field study using seepage meters, we identified groundwater discharge in the intertidal zone of the lagoon. The seeping fluid was a mixture of two water types: one with low salinity and high nitrate concentration and another similar to local seawater. Based on the integration of monthly seepage rate measurements throughout the year, we estimate the mean discharge of submarine groundwater into the lagoon to be 3.6 mday−1 per linear meter of coastline with freshwater contributions (per volume) ranging from 10% to 50%. The results of this study suggest a continental origin for the freshwater component, thus linking the biogeochemical cycles in the lagoon to anthropogenic activities taking place in the neighboring coastal plain. We further identify SGD as an important nutrient source to the Ria Formosa, estimating annual loads of 36.2 mol (0.507 kg) of Nitrogen, 1.1 mol (0.034 kg) of Phosphorus and 18.6 mol (0.522 kg) of Silicon per meter of coastline. Based on these results, we suggest that SGD is a potential contributor to the observed nutrification status of the Ria Formosa lagoon. All the authors were previously in Biogeochemistry Research Group, CIMA/IMAR (Centro de Investigacao Marinha e Ambiental/Instituto do Mar), Campus de Gambelas, 8000, Faro.  相似文献   

4.
Submarine groundwater discharge in Osaka Bay, Japan   总被引:6,自引:0,他引:6  
Submarine groundwater discharge (SGD) rates in Osaka Bay were continuously measured and analyzed to evaluate seawater–groundwater interactions. Fast Fourier transfer and power spectrum density methods were applied to analyze the dominant periods of the SGD variations. Diurnal and semidiurnal periods of SGD variation were found, and they were caused by tidal effects. According to the separation of SGD into fresh and recirculated water components using automated seepage meter measurements and terrestrial groundwater flow analyses, the fresh groundwater component in SGD was evaluated to be in the range 4%–29% at Tannowa, Osaka. Therefore, SGD rates depend mainly on the volume of recirculated seawater. Correlation analyses between SGD and sea level show that SGD is delayed by 4h after sea level changes.  相似文献   

5.
Submarine groundwater discharge (SGD) into Cockburn Sound Western Australia was quantified by applying a distributed groundwater flow model to estimate the inshore aquifer water balance. Spatially averaged SGD along the coast was estimated to be 2.5–4.8?±?0.9?m3?day?1?m?1. The range in estimated average SGD reflected low and high estimates of average groundwater recharge, which ranged from 0.13 to 0.24?m?year?1 (15–28% of average annual rainfall). The error ±0.9?m3?day?1?m?1 was calculated by assuming arbitrary ±20% errors in groundwater pumping and inflow across boundaries. SGD varied spatially along the coastal boundary due to variation in hydraulic connection between the coastal aquifers and ocean, and spatial variability in recharge, transmissivity and pumping. Under assumptions of low and high groundwater recharge, SGD along the coastline varied in the ranges 1.4–4.6?m3?day?1?m?1 and 2.4–7.9?m3?day?1?m?1, respectively.  相似文献   

6.
Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai''i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kūpikipiki''ō high tide) increased NEP, but high fluxes of highly enriched SGD (Kūpikipiki''ō low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection.  相似文献   

7.
Submarine groundwater discharge (SGD) is approached differently by terrestrial hydrogeologists and marine scientists, including whether to incorporate recirculated seawater with freshwater in the definition. This paper focuses on the major hydrogeologic modeling/calculational methods, what component of SGD they quantify and on what scale. It then compares the modeling methods to direct measurement and geochemical techniques used by marine scientists. Hydrogeologic modeling methods focus primarily on freshwater, but recirculated seawater can be examined with density-dependent, solute transport numerical modeling. Direct physical measurements and geochemical tracers performed in the marine environment can quantify fresh, brackish, or seawater fluxes, so that they are not always comparable to the results of modeling. Because of differences in the geochemistry (nutrients and other dissolved species) of fresh and saline waters, for many applications it may be necessary to distinguish between the fresh and recirculated seawater components of SGD.  相似文献   

8.
Submarine groundwater discharge to coastal waters can be a significant source of both contaminants and biologically limiting nutrients. Nitrogen cycling across steep gradients in salinity, oxygen and dissolved inorganic nitrogen in sandy 'subterranean estuaries' controls both the amount and form of nitrogen discharged to the coastal ocean. We determined the effect of these gradients on betaproteobacterial ammonia-oxidizing bacteria (β-AOB) and ammonia-oxidizing archaea (AOA) in a subterranean estuary using the functional gene encoding ammonia monooxygenase subunit A ( amoA ). The abundance of β-AOB was dramatically lower in the freshwater stations compared with saline stations, while AOA abundance remained nearly constant across the study site. This differing response to salinity altered the ratio of β-AOB to AOA such that bacterial amoA was 30 times more abundant than crenarchaeal amoA at the oxic marine station, but nearly 10 times less abundant at the low-oxygen fresh and brackish stations. As the location of the brackish mixing zone within the aquifer shifted from landward in winter to oceanward in summer, the location of the transition from a β-AOB-dominated to an AOA-dominated community also shifted, demonstrating the intimate link between microbial communities and coastal hydrology. Analysis of ammonia-oxidizing enrichment cultures at a range of salinities revealed that AOA persisted solely in the freshwater enrichments where they actively express amoA . Diversity (as measured by total richness) of crenarchaeal amoA was high at all stations and time points, in sharp contrast to betaproteobacterial amoA for which only two sequence types were found. These results offer new insights into the ecology of AOA and β-AOB by elucidating conditions that may favour the numerical dominance of β-AOB over AOA in coastal sediments.  相似文献   

9.
Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods.  相似文献   

10.
Short and long-lived radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) were used to quantify submarine groundwater discharge (SGD) and its associated input of inorganic nitrogen (NO3 ?), phosphorus (PO4 3?) and silica (SiO4 4?) into the karstic Alcalfar Cove, a coastal region of Minorca Island (Western Mediterranean Sea). Cove water, seawater and groundwater (wells and karstic springs) samples were collected in May 2005 and February 2006 for radium isotopes and in November 2007 for dissolved inorganic nutrients. Salinity profiles in cove waters suggested that SGD is derived from shallow brackish springs that formed a buoyant surface fresh layer of only 0.3 m depth. A binary mixing model that considers the distribution of radium activities was used to determine the cove water composition. Results showed that cove waters contained 20% brackish groundwater; of which 6% was recirculated seawater and 14% corresponded to freshwater discharge. Using a radium-derived residence time of 2.4 days, a total SGD flux of 150,000 m3 year?1 was calculated, consisting of 45,000 m3 year?1 recirculated seawater and 105,000 m3 year?1 fresh groundwater. Fresh SGD fluxes of NO3 ?, SiO4 4? and PO4 3? were estimated to be on the order of 18,000, 1,140 and 4 μmol m?2 day?1, respectively, and presumably sustain the high phytoplankton biomass observed in the cove during summer. The total amount of NO3 ? and SiO4 4? supplied by SGD was higher than the measured inventories in the cove, while the reverse was true for PO4 3?. These discrepancies are likely due to non-conservative biogeochemical processes that occur within the subterranean estuary and Alcalfar Cove waters.  相似文献   

11.
This article reports the results of a study of submarine groundwater discharge (SGD) to coastal waters of Majorca (NW Mediterranean). The overall aim is to evaluate the relevance of SGD of the island and chemically characterize the components that are supplied to the coastal waters through this pathway. Although other discharge areas are identified, we particularly focus on SGD in bays and areas of increased sea water residence time where effects of the discharges are expected to be most notable. Analysis at four selected embayments with different land-use characteristics indicated a link between human activities (mainly agriculture and urban) and compounds arriving to the coast. A pathway for these elements is the diffuse discharge along the shoreline, as suggested by the inverse relationship between salinity and nutrients in nearshore porewaters. A general survey was conducted at 46 sites around the island, and used dissolved radium as a qualitative indicator of SGD. Measurements of nutrients (P and N), pCO2 and TOC were performed to characterize the elements delivered to the coastal environment. Most nearshore samples showed 224Ra enrichment (mean ± SE, 7.0 ± 0.6 dpm 100 l?1) with respect to offshore waters (1.1 ± 0.2 dpm 100 l?1); however, 224Ra measurements along the coast were highly variable (1.0–38.1 dpm 100 l?1). Coastal samples with enhanced radium levels showed elevated pCO2 with respect to atmospheric concentrations, which together with high pCO2 in groundwater (>5,000 ppm) indicates that SGD is an important vector of CO2 to coastal waters. Moreover, a relationship between 224Ra and phytoplankton biomass was established, suggesting an important impact of SGD on coastal productivity. The results presented here provide a first approximation of the SGD effect in the coastal waters of Majorca, and indicate that SGD could be an important source of nutrients and CO2 to the coast, strongly influencing the productivity and biogeochemical cycling of the coastal waters of Majorca.  相似文献   

12.
In an alluvial aquifer in the River Fulda Valley (Germany) the influence of agricultural inputs on the subterranean physical, chemical and biological relationships was examined. A 40-year-old (1977–1981) comprehensive data set on the groundwater microbiome plus metazoa was now analysed for the first time in full (measurements for up to 4 years: hydrological, chemical, physical, prokaryote, and metazoa characteristics). Four hydrogeochemically different groundwater zones were identified across the floodplain. In addition, the prokaryote (Archaea and Bacteria) and metazoan communities differed among the four zones. The hydraulic exchange between the alluvial aquifer and the River Fulda influenced the sites closest to the river, leading to the highest prokaryote and metazoan biomasses at these locations. An organic carbon plume zone of anthropogenic origin exhibited high prokaryote abundances and production, which were higher than in the surrounding mixing zone. This mixing zone represented a transition area to the river-influenced sites as well as to the fourth zone, which was characterized by high nutrient levels from intense agriculture and which exhibited low prokaryote abundance and activity and intermediate metazoan abundance. Despite high prokaryote productivity, metazoa did not favor the organic carbon plume, due probably to low oxygen concentrations. At the sites, where metazoa occurred, their biomass corresponded mostly to about one hundredth of the prokaryote biomass. The main implication from this new analysis of an old data set is that even on a coarse taxonomical resolution, patterns emerge that show – in a geologically homogeneous area – an unprecedented complexity among different groundwater zones resulting from different external influences of natural as well as anthropogenic origin. Future studies need to ascertain an adequate temporal and spatial resolution.  相似文献   

13.
The seawater intrusion is a widespread environmental problem of coastal aquifers where more than two third of the world’s population lives. The indiscriminate and unplanned groundwater withdrawal for fulfilling the growing freshwater needs of coastal regions causes this problem. Computer-based models are useful tools for achieving the optimal solution of seawater intrusion management problems. Various simulation and optimization modeling approaches have been used to solve the problems. Optimization approaches have been shown to be of great importance when combined with simulation models. A review on the combined applications of simulation and optimization modeling for the seawater intrusion management of the coastal aquifers are done and is presented in this paper. The reviews revealed that the simulation–optimization modeling approach is very suitable for achieving an optimal solution of seawater intrusion management problems even with a large number of variables. It is recommended that the future research should be directed toward improving the long-term hydraulic assessment by collecting and analyzing widespread spatial data, which can be done by increasing the observation and monitoring networks. The coupling of socioeconomic aspects in the seawater intrusion modeling would be another aspect which could be included in the future studies.  相似文献   

14.
Coastal zone managers need to factor submarine groundwater discharge (SGD) in their integration. SGD provides a pathway for the transfer of freshwater, and its dissolved chemical burden, from the land to the coastal ocean. SGD reduces salinities and provides nutrients to specialized coastal habitats. It also can be a pollutant source, often undetected, causing eutrophication and triggering nuisance algal blooms. Despite its importance, SGD remains somewhat of a mystery in most places because it is usually unseen and difficult to measure. SGD has been directly measured at only about a hundred sites worldwide. A typology generated by the Land–Ocean Interaction in the Coastal Zone (LOICZ) Project is one of the few tools globally available to coastal resource managers for identifying areas in their jurisdiction where SGD may be a confounding process. (LOICZ is a core project of the International Geosphere/Biosphere Programme.) Of the hundreds of globally distributed parameters in the LOICZ typology, a SGD subset of potentially relevant parameters may be culled. A quantitative combination of the relevant hydrological parameters can serve as a proxy for the SGD conditions not directly measured. Web-LOICZ View, geospatial software then provides an automated approach to clustering these data into groups of locations that have similar characteristics. It permits selection of variables, of the number of clusters desired, and of the clustering criteria, and provides means of testing predictive results against independent variables. Information on the occurrence of a variety of SGD indicators can then be incorporated into regional clustering analysis. With such tools, coastal managers can focus attention on the most likely sites of SGD in their jurisdiction and design the necessary measurement and modeling programs needed for integrated management.  相似文献   

15.
Direct measurements of submarine groundwaterdischarge (SGD) were taken by three different(continuous heat, heat pulse, and ultrasonic)types of automated seepage meters as well asstandard Lee-type manually operated meters. SGD flux comparisons and the spatial andtemporal variations in groundwater flow wereanalyzed. Seepage rates measured by thedifferent meters agree relatively well witheach other (more than 80% agreement). Comparisons of flux rates as a function ofdistance offshore using exponentialapproximations show that more than fivemeasurement locations (200 m offshore) areneeded for a precise integrated estimation ofSGD offshore within an accuracy of ±10%. Thedominant period of seepage variations isestimated to be about 12 hours, which closelymatches the semidiurnal tides in this area. Our analysis also shows that short durationmeasurement periods may cause significantunderestimates or overestimates of the dailyaveraged groundwater flow rates (±25%–±60% difference when the measurement durationis less than 12 hours). Thus, continuousmeasurements of SGD using automated seepagemeters with high time resolution should enableus to evaluate temporal and spatial variationsof dissolved material transports viagroundwater pathways. Such inputs may affectbiogeochemical phenomena in the coastal zone.  相似文献   

16.
Aquifers, springs and other groundwater‐dependent ecosystems are threatened by urban land use, which causes water quality deterioration through nutrient loading, sewage infiltration, groundwater extraction and, along coasts, seawater intrusion. The presence of certain microbes in groundwater can indicate that an aquifer is anthropogenically contaminated. Interpretations made from observations of indicator microbes in groundwater are limited because the relationship between the presumably allochthonous indicator microbes and relevant autochthonous microbial communities has not been characterized. This study addressed whether autochthonous aquifer biofilms can influence the presence of presumed microbial indicators in groundwater, and simultaneously used microbial indicators to trace sources of urban contamination at a karst spring of conservation concern. These questions were approached using a 17‐month time series analysis of attached biofilm and adjacent unattached bacteria in the submerged karst aquifer conduit associated with this spring. Environmental 16S rRNA gene sequencing was performed to characterize these communities, and community structure data were contextualized with groundwater geochemical and hydrogeological measurements. Linear regression models were developed to explain the relative abundance patterns of indicator microbes and other unattached microbes at this site. The results of this study suggest that dominant aquifer biofilms do not influence the presence of unattached microbial taxa that are presumed to be indicators of groundwater contamination, and generated new information about the origin of coliform bacteria at the study site. These results build confidence in the use of microbial indicators in groundwater‐dependent ecosystem conservation strategies and inform future management plans for urban aquifers and springs worldwide.  相似文献   

17.
The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.  相似文献   

18.
Effects of salinity conditions, ranging from fresh water to 80, on the survival of marine molluscan fouling species, Mytilopsis sallei Recluz, have been studied in the laboratory. The results show that the species exhibits a wide tolerance to different salinity conditions including freshwater, showing normal activity up to 50 beyond which the higher salt concentration had a lethal effect. The effect of various salinity conditions on spawning has also been examined. The significance of wide range tolerance to salinity on the fouling in seawater cooling systems is discussed.  相似文献   

19.
Primary samples of groundwater or core are collected and analyzed to characterize the microbiology of aquifers and to predict biogeochemical transformations. Alternative sampling devices have been developed that are incubated for some length of time in the aquifer to accrue biomass for analysis. Considering data generated from different types of aquifer samples, it appears that the type of sample collected and analyzed may strongly influence the resulting view of aquifer microbiology. Borehole artifacts need to be rigorously considered when incubated substrata are used. The indigenous attached populations in deeper, fractured rock aquifers remain understudied and await new sampling approaches.  相似文献   

20.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号