首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Objectives

To identify the best lipid nanoparticles for delivery of purified Cas9 protein and gRNA complexes (Cas9 RNPs) into mammalian cells and to establish the optimal conditions for transfection.

Results

Using a systematic approach, we screened 60 transfection reagents using six commonly-used mammalian cell lines and identified a novel transfection reagent (named Lipofectamine CRISPRMAX). Based on statistical analysis, the genome modification efficiencies in Lipofectamine CRISPRMAX-transfected cell lines were 40 or 15 % higher than those in Lipofectamine 3000 or RNAiMAX-transfected cell lines, respectively. Upon optimization of transfection conditions, we observed 85, 75 or 55 % genome editing efficiencies in HEK293FT cells, mouse ES cells, or human iPSCs, respectively. Furthermore, we were able to co-deliver donor DNA with Cas9 RNPs into a disrupted EmGFP stable cell line, resulting in the generation of up to 17 % EmGFP-positive cells.

Conclusion

Lipofectamine CRISPRMAX was characterized as the best lipid nanoparticles for the delivery of Cas9 RNPs into a variety of mammalian cell lines, including mouse ES cells and iPSCs.
  相似文献   

3.
4.
5.

Objectives

To identify whether lncRNAs (long non-coding RNA) participate in the regulation of cisplatin-resistant induced autophagy in endometrial cancer cells.

Results

Autophagy activity was significantly boosted in cisplatin-resistant Ishikawa cells, a human endometrial cancer cell line, compared with that in parental Ishikawa cells. After analyzing the overall long noncoding RNA (lncRNA) profiling, a meaningful lncRNA, HOTAIR, was identified. It was down-regulated simultaneously in cisplatin-resistant Ishikawa cells and parental Ishikawa cells treated with cisplatin. RNA interference of HOTAIR reduced the proliferation of cisplatin-resistant Ishikawa cells and enhanced the autophagy activity of cisplatin-resistant Ishikawa cells with or without cisplatin treatment, in addition, beclin-1, multidrug resistance (MDR), and P-glycoprotein (P-gp) were mediated by lncRNA HOTAIR.

Conclusions

It is clear that lncRNAs, specifically HOTAIR, can regulate the cisplatin-resistance ability of human endometrial cancer cells through the regulation of autophagy by influencing Beclin-1, MDR, and P-gp expression.
  相似文献   

6.

Background

Primordial germ cells (PGC) are the precursors of the gametes. During pre-natal development, PGC undergo an epigenetic reprogramming when bulk DNA demethylation occurs and is followed by sex-specific de novo methylation. The de novo methylation and the maintenance of the methylation patterns depend on DNA methyltransferases (DNMTs). PGC reprogramming has been widely studied in mice but not in rats. We have previously shown that the rat might be an interesting model to study germ cell development. In face of the difficulties of getting enough PGC for molecular studies, the aim of this study was to propose an alternative method to study rat PGC DNA methylation. Rat embryos were collected at 14, 15 and 19 days post-coitus (dpc) for the analysis of 5mC, 5hmC, DNMT1, DNMT3a and DNMT3b expression or at 16dpc for treatment 5-Aza-CdR, a DNMT inhibitor, in vitro.

Methods

Once collected, the gonads were placed in 24-well plates previously containing 45μm pore membrane and medium with or without 5-Aza-CdR. The culture was kept for five days and medium was changed daily. The gonads were either fixed or submitted to RNA extraction.

Results

5mC and DNMTs labelling suggests that PGC are undergoing epigenetic reprogramming around 14/15dpc. The in vitro treatment of rat embryonic gonads with 1 μM of 5-Aza-CdR lead to a loss of 5mC labelling and to the activation of Pax6 expression in PGC, but not in somatic cells, suggesting that 5-Aza-CdR promoted a PGC-specific global DNA hypomethylation.

Conclusions

This study suggests that the protocol used here can be a potential method to study the wide DNA demethylation that takes place during PGC reprogramming.
  相似文献   

7.

Background

Recently, growing attention has been directed toward stem cell metabolism, with the key observation that metabolism not only fuels the proper functioning of stem cells but also regulates the fate of these cells. There seems to be a clear link between the self-renewal of pluripotent stem cells (PSCs), in which cells proliferate indefinitely without differentiation, and the activity of specific metabolic pathways. The unique metabolism in PSCs plays an important role in maintaining pluripotency by regulating signaling pathways and resetting the epigenome.

Objective

To review the most recent publications concerning the metabolism of pluripotent stem cells and the role of metabolism in PSC self-renewal and differentiation.

Methods

A systematic literature search related to the metabolism of PSCs was conducted in databases including Medline, Embase, and Web of Science. The search was performed without language restrictions on all papers published before May 2016. The following keywords were used: “metabolism” combined with either “embryonic stem cell” or “epiblast stem cell.”

Results

Hundreds of papers focusing specifically on the metabolism of pluripotent stem cells were uncovered and summarized.

Conclusion

Identifying the specific metabolic pathways involved in pluripotency maintenance is crucial for progress in the field of developmental biology and regenerative medicine. Additionally, better understanding of the metabolism in PSCs will facilitate the derivation and maintenance of authentic PSCs from species other than mouse, rat, and human.
  相似文献   

8.
9.

Objective

To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12.

Results

Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P < 0.05). Furthermore, PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed.

Conclusion

PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.
  相似文献   

10.

Background

Deregulated metabolism is a hallmark of cancer and recent evidence underlines that targeting tumor energetics may improve therapy response and patient outcome. Despite the general attitude of cancer cells to exploit the glycolytic pathway even in the presence of oxygen (aerobic glycolysis or “Warburg effect”), tumor metabolism is extremely plastic, and such ability to switch from glycolysis to oxidative phosphorylation (OxPhos) allows cancer cells to survive under hostile microenvironments. Recently, OxPhos has been related with malignant progression, chemo-resistance and metastasis. OxPhos is induced under extracellular acidosis, a well-known characteristic of most solid tumors, included melanoma.

Methods

To evaluate whether SOX2 modulation is correlated with metabolic changes under standard or acidic conditions, SOX2 was silenced and overexpressed in several melanoma cell lines. To demonstrate that SOX2 directly represses HIF1A expression we used chromatin immunoprecipitation (ChIP) and luciferase assay.

Results

In A375-M6 melanoma cells, extracellular acidosis increases SOX2 expression, that sustains the oxidative cancer metabolism exploited under acidic conditions. By studying non-acidic SSM2c and 501-Mel melanoma cells (high- and very low-SOX2 expressing cells, respectively), we confirmed the metabolic role of SOX2, attributing SOX2-driven OxPhos reprogramming to HIF1α pathway disruption.

Conclusions

SOX2 contributes to the acquisition of an aggressive oxidative tumor phenotype, endowed with enhanced drug resistance and metastatic ability.
  相似文献   

11.

Objectives

To explore potential effects of recombinant human fibroblast growth factor 20 (rhFGF20) in the growth of cultured mouse vibrissal follicles.

Results

The growth of cultured mouse vibrissal follicles was significantly induced by rhFGF20 in a dose dependent pattern in the in vitro vibrissal follicle organ culture model. However, too high concentration of rhFGF20 could inhibit the growth of vibrissal follicles. We further demonstrated that rhFGF20 stimulated the proliferation of hair matrix cells and activated Wnt/β-catenin signaling pathway.

Conclusions

The rhFGF20 might be a potential therapeutic agent to treat hair loss disorders.
  相似文献   

12.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

13.

Background

Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects.

Methods

In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions.

Results

HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects.

Conclusions

These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.
  相似文献   

14.

Objectives

To determine the role of miR-190b in radio-sensitivity of gastric cancer (GC).

Results

In radio-resistant GC cells, down-regulation of miR-190b and up-regulation of Bcl-2 were observed. The protein expression of Bcl-2 was negatively regulated by miR-190b. Overexpression of miR-190b significantly decreased cell viability and enhanced radio-sensitivity of GC cells. Of note, these effects of miR-190b on GC cells radio-sensitivity were abolished by Bcl-2.

Conclusion

miR-190b confers radio-sensitivity of GC cells, possibly via negative regulation of Bcl-2.
  相似文献   

15.
16.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

17.

Background

Human adipose-derived stem cells (hADSCs) are capable of differentiating into many cells such as cardiac cells. Different types of inducers are used for cardiac cell differentiation, but this question still remains to be investigated, which one is the best. The aim of this paper was to investigate the effect of combination of fibrin scaffold and trichostatin A (TSA), for differentiation of hADSCs into cardiomyocyte-like cells.

Methods

After approval of characteristics of hADSCs and fibrin scaffold, hADSCs were cultured in fibrin scaffold with 10 µM TSA for 72 h and kept in standard conditions for 4 weeks. QRT-PCR and immunostaining assay were performed for evaluating the expression pattern of special cardiac genes and proteins.

Results

In particular, our study showed that fibrin scaffold alongside TSA enhanced expression of the selected genes and proteins.

Conclusions

We concluded that the TSA alone or with fibrin scaffold can lead to the generation of cardiac like cells in a short period of time.
  相似文献   

18.

Objective

The purpose of the article is to evaluate the changes in lipid metabolism in bovine mammary-gland epithelial MAC-T cells after PKM2 knockdown.

Results

MAC-T cells stably expressing low levels of PKM2 were established with lentivirus-mediated small hairpin RNA. Although the knockdown of PKM2 had no effect on MAC-T cell growth, the reduced expression of PKM2 attenuated the mRNA and protein expression of key enzymes involved in sterol synthesis through the SREBP pathway.

Conclusions

The downregulation of PKM2 significantly influenced lipid synthesis in bovine mammary-gland epithelial MAC-T cells. These findings extend our understanding of the crosstalk between glycolysis and lipid metabolism in bovine mammary-gland epithelial cells.
  相似文献   

19.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

20.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号