首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Promiscuous mating strategies are much more common than previously appreciated. So much so, that several authors have proposed that promiscuity is the “rule” rather than the exception in vertebrate mating systems. Decreasing species mobility and increasing habitat fragmentation have both been suggested to reduce the “polygyny potential” of the environment and promote other mating strategies like promiscuity in females. We explored the social and genetic mating system for one of the most sedentary extant mammals, the brown-throated three-toed sloth (Bradypus variegatus), within a highly fragmented Neotropical habitat. Surprisingly, we found that three-toed sloths were strongly polygynous, with males excluding male competitors from their core ranges, and exhibiting strong reproductive skew. Indeed, only 25% of all resident adult males sired offspring and one individual sired half of all sampled juveniles. Paradoxically, a sedentary life-history strategy seems to facilitate polygyny in fragmented landscapes because multiple females can persist within small patches of habitat, and be monopolized by a single male. Our work demonstrates that strong polygyny can arise in systems in which the polygyny potential should be extremely low, and other strategies, including promiscuity, would be favoured. Mating systems can be influenced by a multitude of factor and are dynamic, varying among taxa, over time, and across habitats; consequently, mating systems remain difficult to predict based on general ecological principles.  相似文献   

2.
The act frequency approach (Buss 1988) was used to develop a taxonomy of deceptive mating acts and tactics and to investigate hypothesized sex differences in the use of these acts and tactics. The results indicate that males show differences in the types of deceptive acts and tactics used in intersexual versus intrasexual contexts. Intrasexually, males more frequently engage in deceptive acts and tactics related to the exaggeration of superiority and exaggeration of sexual promiscuity, intensity, and popularity. More frequent deceptive intersexual acts and tactics for males include feigned commitment, feigned sincerity, and feigned resource acquisition ability. Females more frequently engage in deceptive acts and tactics related to appearance alteration in both intersexual and intrasexual contexts. It was also found that males use deceptive intrasexual acts and tactics more frequently than females. These findings suggest that the dimensions of deception characteristic of male reproductive strategies are congruent with female mate selection criteria and the dimensions of deception characteristic of female reproductive strategies are congruent with male mate selection criteria. Results are interpreted in terms of current evolutionary psychological approaches to the understanding of sex differences in human mating strategies and the role of deception in intepersonal interaction.  相似文献   

3.
The term 'breeding system' is used to describe the morphological and behavioural aspects of the sexual life cycle of a species. The yeast breeding system provides three alternatives that enable hapoids to return to the diploid state that is necessary for meiosis: mating of unrelated haploids (amphimixis), mating between spores from the same tetrad (intratetrad mating, automixis) and mother daughter mating upon mating type switching (haplo-selfing). The frequency of specific mating events affects the level of heterozygosity present in individuals and the genetic diversity of populations. This review discusses the reproductive strategies of yeasts, in particular S. cerevisiae (Bakers' or budding yeast). Emphasis is put on intratetrad mating, its implication for diversity, and how the particular genome structure could have evolved to ensure the preservation of a high degree of heterozygosity in conjunction with frequent intratetrad matings. I also discuss how the ability of yeast to control the number of spores that are formed accounts for high intratetrad mating rates and for enhanced transmission of genomic variation. I extend the discussion to natural genetic variation and propose that a high level of plasticity is inherent in the yeast breeding system, which may allow variation of the breeding behaviour in accordance with the needs imposed by the environment.  相似文献   

4.
Sperm competition theory has traditionally focused on how male allocation responds to female promiscuity, when males compete to fertilize a single clutch of eggs. Here, we develop a model to ask how female sperm use and storage across consecutive reproductive events affect male ejaculate allocation and patterns of mating and paternity. In our model, sperm use (a single parameter under female control) is the main determinant of sperm competition, which alters the effect of female promiscuity on male success and, ultimately, male reproductive allocation. Our theory reproduces the general pattern predicted by existing theory that increased sperm competition favors increased allocation to ejaculates. However, our model predicts a negative correlation between male ejaculate allocation and female promiscuity, challenging the generality of a prevailing expectation of sperm competition theory. Early models assumed that the energetic costs of precopulatory competition and the level of sperm competition are both determined by female promiscuity, which leads to an assumed covariation between these two processes. By modeling precopulatory costs and sperm competition independently, our theoretical framework allows us to examine how male allocation should respond independently to variation in sperm competition and energetic trade‐offs in mating systems that have been overlooked in the past.  相似文献   

5.
Mammalian mating systems   总被引:37,自引:0,他引:37  
Male mammals show a diverse array of mating bonds, including obligate monogamy, unimale and group polygyny and promiscuity. These are associated with a wide variety of different forms of mate guarding, including the defence of feeding and mating territories, the defence of female groups and the defence of individual receptive females. Female mating bonds include long-term monogamy, serial monogamy, polyandry and promiscuity. Both male and female mating behaviour varies widely within species. Variation in male mating behaviour is related to the effect of male assistance in rearing young and to the defensibility of females by males. The latter is, in turn, related to female ranging behaviour and to the size and stability of female groups. Much of the variation in mammalian mating bonds and systems of mate guarding can be attributed to differences in these three variables.  相似文献   

6.
The traditional narrow focus on male mate competition in studies of mammalian mating strategies has been successful in explaining many conspicuous outcomes of sexual selection. However, focusing on ungulates, I here review increasing evidence that a comprehensive understanding of sexually selected adaptations requires consideration of a broader range of sex roles, particularly those relating to female behaviour. I show how mate competition and mate choice in both sexes can interact and often lead to intra- and intersexual conflicts and sometimes also cooperation. By causing phenotypic selection, these behavioural interactions can shape evolution although the outcome depends on genetic constraints. I conclude that to advance the understanding of mammalian mating systems we must broaden our conceptual framework from being largely focused on male competitive strategies to encompass coevolutionary dynamics between the mating strategies of both sexes. Future challenges include clarifying (1) the ecological basis for the inter- and intraspecific diversity in sex roles, (2) the condition-dependence of female mating strategies, and (3) the ultimate causes of mate competition and promiscuity in females.  相似文献   

7.
The mating system is expected to have an important influence on the evolution of mating and parenting behaviors. Although many studies have used experimental evolution to examine how mating behaviors evolve under different mating systems, this approach has seldom been used to study the evolution of parental care. We used experimental evolution to test whether adaptation to different mating systems involves changes in mating and parenting behaviors in populations of the burying beetle, Nicrophorus vespilloides. We maintained populations under monogamy or promiscuity for six generations. This manipulation had an immediate impact on reproductive performance and adult survival. Compared to monogamy, promiscuity reduced brood size and adult (particularly male) survival during breeding. After six generations of experimental evolution, there was no divergence between monogamous and promiscuous populations in mating behaviors. Parents from the promiscuous populations (especially males) displayed less care than parents from the monogamous populations. Our results are consistent with the hypothesis that male care will increase with the certainty of paternity. However, it appears that this change is not associated with a concurrent change in mating behaviors.  相似文献   

8.
Based on the sexually selected infanticide (SSI) hypothesis, infanticide can be an adaptive mating strategy for males, but this is has rarely been documented in non‐social mammals. This phenomenon should not benefit females, so one would expect females to evolve mating counter strategies in order to protect their infants from infanticidal males. Cases of SSI are extremely difficult to document in the field, especially for non‐social species. Using field observations and genetic methods, we describe mating strategies employed by both sexes of brown bears (Ursus arctos) in relation to SSI. We present evidence for the first time suggesting that infanticide is an adaptive male mating strategy in this non‐social carnivore, as all requirements for SSI are fulfilled (1) infanticide shortens the time to the mother's next estrus, (2) the perpetrator is not the father of the killed infants, and (3) putative perpetrators sire the next litter. Moreover, all infanticide cases occurred during the mating season. We expected that primarily immigrant males were infanticidal, as in social species. However, we found that resident adult males commonly committed infanticide. Perhaps they recognize females they have mated with previously. Moreover, we used DNA‐based parentage testing to demonstrate a minimum of 14.5% of multiple paternities (up to 28% for litters with at least three young). Female promiscuity to confuse paternity may be an adaptive counter strategy to avoid infanticide.  相似文献   

9.
A comparative study of leukocyte counts and disease risk in primates   总被引:2,自引:0,他引:2  
Little is known about how the risk of disease varies across species and its consequences for host defenses, including the immune system. I obtained mean values of basal white blood cells (WBC) from 100 species of primates to quantify disease risk, based on the assumption that higher baseline WBC counts will be found in species that experience greater risk of acquiring infectious disease. These data were used to investigate four hypotheses: disease risk is expected to increase with (1) group size and population density; (2) greater contact with soil-borne pathogens during terrestrial locomotion; (3) a slow life history; and (4) increased mating promiscuity. After controlling for phylogeny, WBC counts increased with female mating promiscuity, as reflected in discrete categories of partner number, relative testes mass, and estrous duration. By comparison, the social, ecological, and life-history hypotheses were unsupported in comparative tests. In terms of confounding variables, some WBC types were associated with body mass or activity period, but these variables could not account for the association with mating promiscuity. Several factors may explain why hypotheses involving social, ecological, and life-history factors went unsupported in these tests, including the role of behavioral counterstrategies to disease, restrictions on female choice of mating partners, and the effect of transmission mode on parasite strategies and host defenses.  相似文献   

10.
Phenotypic diversity occurs in natural populations as a result of the interaction between an individual's genotype and the environment. Nevertheless, individual variation in phenotypic traits such as coat colour and body size is routinely used to differentiate between “pure” dingoes Canis dingo and dingo‐dog hybrids. Extensive anthropogenic impacts and widespread hybridization with domestic dogs has hindered our ability to study intact dingo populations and, therefore, most of our basic understanding of dingo biology (e.g., phenotypic variation, mating systems, genetic diversity) stems from observational studies on perturbed populations. We sampled a relatively undisturbed population of dingoes, from arid Australia, to determine their purity and genetic diversity. We explored their mating strategy using a pedigree built from genetic data and examined how phenotypic variation was influenced by age, sex, heterozygosity, and relatedness. Coat colour was our measure of phenotype and our population displayed four types (sandy, black & tan, white, and sable). All dingoes (n = 83) possessed a high level of dingo ancestry (mean purity > 90%) and were closely related to each other; with all but one individual related as full‐sibling or parent–offspring. Our pedigree shows both monogamous and promiscuous mating strategies exist within an undisturbed population. Variation in coat colour or body size cannot be used to infer a dingo's level of purity because the phenotype of pure dingoes is intrinsically variable. The breeding system of dingoes was long thought to be monogamous, but we provide genetic evidence for numerous mating strategies including both long‐term monogamy and extreme promiscuity.  相似文献   

11.
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine‐scale genetic structure constrains social mate choice in a pair‐bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution.  相似文献   

12.
13.
Female promiscuity is thought to have resulted in the evolution of male behaviours that confer advantages in the sperm competition that ensues. In mammalian species, males can gain a post-copulatory advantage in this sperm 'raffle' by inseminating females at the optimal time relative to ovulation, leading to the prediction that males should preferentially associate and copulate with females at these times. To the best of our knowledge, we provide the first high-resolution test of this prediction using feral Soay sheep, which have a mating system characterized by male competition for access to highly promiscuous females. We find that competitive males time their mate guarding (and hence copulations) to occur close to the optimal insemination period (OIP), when females are also increasingly likely to 'cooperate' with copulation attempts. Subordinate males practice an alternative mating tactic, where they break the integrity of the consort pair and force copulations on females. The timing of these forced copulations is also targeted towards the OIP. We thus provide quantitative evidence that female promiscuity has resulted in the evolution of reproductive strategies in which males 'load' the sperm raffle by targeting their mating activity towards female OIPs, when the probability of sperm-competition success is at its greatest.  相似文献   

14.
Observations on mating behaviours and strategies guide our understanding of mating systems and variance in reproductive success. However, the presence of cryptic strategies often results in situations where social mating system is not reflective of genetic mating system. We present such a study of the genetic mating system of a harem-forming bat Cynopterus sphinx where harems may not be true indicators of male reproductive success. This temporal study using data from six seasons on paternity reveals that social harem assemblages do not play a role in the mating system, and variance in male reproductive success is lower than expected assuming polygynous mating. Further, simulations reveal that the genetic mating system is statistically indistinguishable from promiscuity. Our results are in contrast to an earlier study that demonstrated high variance in male reproductive success. Although an outcome of behavioural mating patterns, standardized variance in male reproductive success (I(m)) affects the opportunity for sexual selection. To gain a better understanding of the evolutionary implications of promiscuity for mammals in general, we compared our estimates of I(m) and total opportunity for sexual selection (I(m) /I(f), where I(f) is standardized variance in female reproductive success) with those of other known promiscuous species. We observed a broad range of I(m) /I(f) values across known promiscuous species, indicating our poor understanding of the evolutionary implications of promiscuous mating.  相似文献   

15.
Statistical decision theory is discussed as a general framework for analysing how animals should learn. Attention is focused on optimal foraging behaviour in stochastic environments. We emphasise the distinction between the mathematical procedure that can be used to find optimal solutions and the mechanism an animal might use to implement such solutions. The mechanisms might be specific to a restricted class of problems and produce suboptimal behaviour when faced with problems outside this class. We illustrate this point by an example based on what is known in the literature on animal learning as the partial reinforcement effect.  相似文献   

16.
Intersexual conflicts over mating can engender antagonistic coevolution of strategies, such as coercion by males and selective resistance by females. Orangutans are exceptional among mammals for their high levels of forced copulation. This has typically been viewed as an alternative mating tactic used by the competitively disadvantaged unflanged male morph, with little understanding of how female strategies may have shaped and responded to this behaviour. Here, we show that male morph is not by itself a good predictor of mating dynamics in wild Bornean orangutans but that female conception risk mediated the occurrence and quality of male–female interactions. Near ovulation, females mated cooperatively only with prime flanged males who they encountered at higher rates. When conception risk was low, willingness to associate and mate with non-prime males increased. Our results support the hypothesis that, together with concealed ovulation, facultative association is a mechanism of female choice in a species in which females can rarely avoid coercive mating attempts. Female resistance, which reduced copulation time, may provide an additional mechanism for mate selection. However, coercive factors were also important as prime males were frequently aggressive to females and females used mating strategies consistent with infanticide avoidance.  相似文献   

17.
Understanding causes of variation in promiscuity within populations remain a major challenge. While most studies have focused on quantifying fitness costs and benefits of promiscuous behaviour, an alternative possibility--that variation in promiscuity within populations is maintained because of linkage with other traits-has received little attention. Here, we examine whether promiscuity in male and female great tits (Parus major)--quantified as extra-pair paternity (EPP) within and between nests--is associated with variation in a well-documented personality trait: exploration behaviour in a novel environment. Exploration behaviour has been shown to correlate with activity levels, risk-taking and boldness, and these are behaviours that may plausibly influence EPP. Exploration behaviour correlated positively with paternity gained outside the social pair among males in our population, but there was also a negative correlation with paternity in the social nest. Hence, while variation in male personality predicted the relative importance of paternity gain within and outside the pair bond, total paternity gained was unrelated to exploration behaviour. We found evidence that males paired with bold females were more likely to sire extra-pair young. Our data thus demonstrate a link between personality and promiscuity, with no net effects on reproductive success, suggesting personality-dependent mating tactics, in contrast with traditional adaptive explanations for promiscuity.  相似文献   

18.
Passerine birds show large interspecific variation in extrapair paternity rates. There is accumulating evidence that such promiscuous behavior is driven by indirect, genetic benefits to females. Sexual selection theory distinguishes between two types of genetic benefits, additive and nonadditive effects, mediated by preferences for good and compatible genes, respectively. Good genes preferences should imply directional selection and mating skew among males, and thus reduced genetic diversity in the population. In contrast, compatible genes preferences should give balancing selection that retains genetic diversity. Here, we test how well these predictions fit with patterns of variation in genetic diversity and promiscuity levels among passerine birds. We found that more promiscuous species had higher nucleotide diversity at autosomal introns, but not at Z‐chromosome introns. We also found that major histocompatibility complex (MHC) class IIB alleles had higher sequence diversity, and therefore should recognize a broader spectrum of pathogens, in more promiscuous species. Our results suggest that female promiscuity targets a multitude of autosomal genes for their nonadditive, compatibility benefits. Also, as immunity genes seem to be of particular importance, we hypothesize that interspecific variation in female promiscuity among passerine birds has arisen in response to the strength of pathogen‐mediated selection.  相似文献   

19.
Among a variety of fish mating systems, promiscuity with random-mating seems to be most prevalent. However, detailed studies of promiscuity have been rare due partly to the peculiar difficulty in examination of male mating and reproductive success in the random mating. Females of the armoured catfish Corydoras aeneus (no sexual dimorphism other than size of males > females) spawn 10–20 egg-clutches with multiple males at a time, but an entire egg clutch is inseminated by sperm of a single male. We studied mating system of this fish in aquarium. Males had neither mating territories nor monopolized females, never being aggressive against rival males. Evidence of female preference for certain male traits including size was not detected. Females mated a male in proportion to his relative courtship frequency among males. Courtship frequency was not related to male size, and male mating success was not different between small and large males. Clutch size and insemination rate were different neither between small and large males nor between frequently and less frequently courting males. Thus, the male reproductive success will not be related to the male size, but directly to courtship frequency, indicating the random mating in this fish. There seemed to be fecundity advantage with size in female, and the consequent sexual difference in energy allocation will be responsible to the sexual dimorphism. We also discuss the low male-GSI in this promiscuous fish in which sperm competition hardly occurred.  相似文献   

20.
The study of social behaviour can give us important insights into the social and mating system of a species or population. We investigated male–female interactions in captive bushveld gerbils, Gerbilliscus leucogaster, to gain insight into the social behaviour and mating structure. We conducted two experiments. In experiment 1, we studied the interactions between two strangers for a week in a three-tank setup, which tested behavioural variation spatially and temporally. Although tolerance between strange males and females increased with time, it remained generally low throughout the experiment. Females appeared to be cautious of males initially, but they later became aggressive towards them. Males showed an increase in submissive behaviour over time. The ‘home’ cage did not appear to be defended by either sex. In experiment 2, we investigated the social interactions of male–female pairs during pregnancy and lactation. Aggression persisted throughout the study and amicable behaviour was low; females were much more aggressive than males. We did not detect changes in social behaviour with the progression of pregnancy and lactation. We suggest that pair bonding is unlikely and that promiscuity is the most probable mating system. Female aggression may be related to mate choice prior to mating and mate exclusion thereafter, while it may be a response to infanticide risk during pregnancy and lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号