首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metagenomics is an emerging field for mining the bioresources for new biomolecules for potential application in biotechnology and biomedicine. In the present study, a novel acetylhydrolase (Est13) was detected during the function-based screening of a metagenomic library established from the DNA extracted from the cellulose-depleting microbial community set up with an earthworm cast. Analysis showed that Est13 exhibited some similarities with a human and parasite platelet-activating factor acetylhydrolase (PAF-AH) belonging to the SGNH hydrolase superfamily. Biochemical characterization of the purified recombinant enzyme using substrates common for hydrolases of this superfamily demonstrated that Est13 hydrolysed p-nitrophenyl acetate quite efficiently, with a k(cat) /K(M) value of 3209 mM(-1) s(-1). The Est13 showed highest activity at pH 8.0 and 40°C, conditions in which it is relatively stable compared with known PAF-AHs. In vitro functional analysis of the platelet-activating factor hydrolysis showed a dose- and time-dependent inhibition of platelet aggregation in the range of 2-4 μM, making this enzyme a potential candidate for biomedical applications.  相似文献   

2.
Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.  相似文献   

3.

Background

Bacteria are key components in all ecosystems. However, our knowledge of bacterial metabolism is based solely on the study of cultivated organisms which represent just a tiny fraction of microbial diversity. To access new enzymatic reactions and new or alternative pathways, we investigated bacterial metabolism through analyses of uncultivated bacterial consortia.

Methodology/Principal Findings

We applied the gene context approach to assembled sequences of the metagenome of the anaerobic digester of a municipal wastewater treatment plant, and identified a new gene which may participate in an alternative pathway of lysine fermentation.

Conclusions

We characterized a novel, unique aminotransferase that acts exclusively on Coenzyme A (CoA) esters, and proposed a variant route for lysine fermentation. Results suggest that most of the lysine fermenting organisms use this new pathway in the digester. Its presence in organisms representative of two distinct bacterial divisions indicate that it may also be present in other organisms.  相似文献   

4.
Beres SB  Musser JM 《PloS one》2007,2(8):e800
Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is approximately 1.9 Mb in size, with approximately 10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics.  相似文献   

5.

Background

Alkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome.

Results

The gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca2+ and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology.

Conclusions

The presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.  相似文献   

6.
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.  相似文献   

7.
8.
9.
Opportunistic viruses are a major problem for immunosuppressed individuals, particularly following organ or stem cell transplantation. Current treatments are non-existent or suffer from problems such as high toxicity or development of resistant strains. We previously published that a trafficking inhibitor that targets a host protein greatly reduces the replication of human cytomegalovirus. This inhibitor was also shown to be moderately effective against polyomaviruses, another family of opportunistic viruses. We have developed a panel of analogues for this inhibitor and have shown that these analogues maintain their high efficacy against HCMV, while substantially lowering the concentration required to inhibit polyomavirus replication. By targeting a host protein these compounds are able to inhibit the replication of two very different viruses. These observations open up the possibility of pan-viral inhibitors for immunosuppressed individuals that are effective against multiple, diverse opportunistic viruses.  相似文献   

10.
The complete genomic sequence of kelp fly virus (KFV), originally isolated from the kelp fly, Chaetocoelopa sydneyensis, has been determined. Analyses of its genomic and structural organization and phylogeny show that it belongs to a hitherto undescribed group within the picorna-like virus superfamily. The single-stranded genomic RNA of KFV is 11,035 nucleotides in length and contains a single large open reading frame encoding a polypeptide of 3,436 amino acids with 5' and 3' untranslated regions of 384 and 343 nucleotides, respectively. The predicted amino acid sequence of the polypeptide shows that it has three regions. The N-terminal region contains sequences homologous to the baculoviral inhibitor of apoptosis repeat domain, an inhibitor of apoptosis commonly found in animals and in viruses with double-stranded DNA genomes. The second region contains at least two capsid proteins. The third region has three sequence motifs characteristic of replicase proteins of many plant and animal viruses, including a helicase, a 3C chymotrypsin-like protease, and an RNA-dependent RNA polymerase. Phylogenetic analysis of the replicase motifs shows that KFV forms a distinct and distant taxon within the picorna-like virus superfamily. Cryoelectron microscopy and image reconstruction of KFV to a resolution of 15 A reveals an icosahedral structure, with each of its 12 fivefold vertices forming a turret from the otherwise smooth surface of the 20-A-thick capsid. The architecture of the KFV capsid is unique among the members of the picornavirus superfamily for which structures have previously been determined.  相似文献   

11.
12.
13.
Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.  相似文献   

14.
15.
16.
There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.  相似文献   

17.
18.
Oxygenases form an interesting class of biocatalysts, as they typically perform oxygenations with exquisite chemo-, regio-, and/or enantioselectivity. It has been observed that, once heterologously expressed in Escherichia coli, some oxygenases are able to form the blue pigment indigo. We have exploited this characteristic to screen a metagenomic library derived from loam soil and identified a novel oxygenase. This oxygenase shows 50% sequence identity with styrene monooxygenases from pseudomonads (StyA). Only a limited number of homologs can be found in the genome sequence database, indicating that this biocatalyst is a member of a relatively small family of bacterial monooxygenases. The newly identified monooxygenase catalyzes the epoxidation of styrene and styrene derivatives and forms the corresponding (S)-epoxides with excellent enantiomeric excess [e.g., (S)-styrene oxide is formed with >99% enantiomeric excess, ee] and therefore is named styrene monooxgenase subunit A (SmoA). SmoA shows high enantioselectivity towards aromatic sulfides [e.g., (R)-ethyl phenyl sulfoxide is formed with 92% ee]. This excellent enantioselectivity in combination with the moderate sequence identity forms a clear indication that SmoA from a metagenomic origin represents a new enzyme within the small family of styrene monooxygenases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号