共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycobiology of neuromuscular disorders 总被引:7,自引:0,他引:7
There has been a recent explosion in the identification of neuromuscular diseases caused by mutations in genes that affect carbohydrate metabolism or protein glycosylation. A number of these findings relate to defects in the glycosylation of alpha dystroglycan. Alpha dystroglycan is an essential component of the dystrophin-glycoprotein complex, and aberrant glycosylation of alpha dystroglycan is associated with multiple forms of muscular dystrophy in mice and humans. We review the evidence that defects in dystroglycan glycosylation cause muscular dystrophy. In addition, we review evidence that glycobiology is important in other disorders that affect muscle, including hereditary inclusion body myopathy type II and congenital disorders of glycosylation. Finally, we discuss the long-term potential of glycotherapies for muscle disorders. 相似文献
2.
To understand how synapses form, it is important to be able to watch them as they form. Transgenic mice in which motor axons are indelibly labeled with the Green Fluorescent Protein (GFP) or one of its spectral variants (XFPs) provide a new way to image motor nerve terminals; when combined with contrasting stains for the postsynaptic membrane, both pre- and postsynaptic elements can be viewed in live animals. The development, maturation, stability, remodeling and regeneration of neuromuscular junctions and motor units can then be assessed over intervals ranging from seconds to months. 相似文献
3.
We have detected the neural cell adhesion molecule, N-CAM, at nerve-muscle contacts in the developing and adult mouse diaphragm. Whereas we found N-CAM staining with fluorescent antibodies consistently to overlap with the pattern of alpha-bungarotoxin staining at nerve-muscle contacts both during development and in the adult, we observed N-CAM staining on the surfaces of developing myofibers and at much lower levels on adult myofibers. Consistent with its function, N-CAM was also detected on axons and axon terminals. Immunoblotting experiments with anti-N-CAM antibodies on detergent extracts of embryonic (E) diaphragm muscle revealed a polydisperse polysialylated N-CAM polypeptide, which in the adult (A) was converted to a discrete form of Mr 140,000; this change, called E-to-A conversion, was previously found to occur in different neural tissues at different rates. The Mr 140,000 component was not recognized by monoclonal antibody anti-N-CAM No. 5, which specifically recognizes antigenic determinants associated with N-linked oligosaccharide determinants on N-CAM from neural tissue. The relative concentration of the Mr 140,000 component prepared from diaphragm muscle increased during fetal development and then decreased sharply to reach adult values. Nevertheless, expression of N-CAM in muscle could be induced after denervation: one week after the sciatic nerve was severed, the relative amount of N-CAM increased dramatically as detected by immunoblots of extracts of whole muscle. Immunofluorescent staining confirmed that there was an increase in N-CAM, both in the cell and at the cell surface; at the same time, however, staining at the motor endplate was diminished. Our findings indicate that, in muscle, in addition to chemical modulation, cell-surface modulation of N-CAM occurs both in amount and distribution during embryogenesis and in response to denervation. 相似文献
4.
F A Wali 《Life sciences》1985,37(17):1559-1561
Diazepam (Valieum, Roche) is a centrally-acting drug belonging to the benzodiazepine group of tranquillisers with anxiolytic, hypnotic, anti-convulsant and myorelaxant properties (1). It has been reported that in addition to its central effects (1), diazepam also produces relaxation of the skeletal muscle (2, 3). The myorelaxation produced by diazepam is thought to be of central origin (2), although at least some of the effects is due to a peripheral effect of diazepam, i.e. at the neuromuscular junction.Although the effects and interactions of diazepam with neuromuscular blocking agents have been studied by many workers (2–12), the results reported are somehow are controversial (4–8). In sum, diazepam can either enhance or depress neuromuscular transmission, the effect being dependent on the concentration and the type of the preparation used. A multi-site of action of diazepam may provide an explanation for some of the anomalies reported in the literature. 相似文献
5.
Changes in the effective membrane resistance of the abductor muscle of the dactylopodite of the crayfish were used to indicate changes in the GABA concentration in the synaptic cleft. Following bath application of GABA (10?5 to 5 × 10?5M), the muscle membrane resistance decreased and then increased slowly over the next few minutes. Renewing the solution or stirring the bath restored the GABA effect. Higher GABA concentrations produced a large stable decrease in membrane resistance. An active uptake system for GABA in the junctional region is suggested by the observation that the slow increase in membrane resistance following GABA application was decreased by cooling to 2°C or by the addition of known GABA uptake blockers such as L -DABA, β-guanidinopropionic acid, or nipecotic acid. The transport inhibitors, PCMBS and chlorpromazine, produced irreversible decreases in muscle membrane resistance, which precluded examining their effects on GABA inactivation. The decrease in GABA effect was not dependent on the external sodium concentration or on the degree of receptor activation. Nipecotic acid, which blocked GABA inactivation, did not affect the decay of the neurally evoked inhibitory junctional potential. 相似文献
6.
7.
Giniatullin RA Sokolova EM 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》1998,84(10):1132-1138
Review of modulating role of the ATP in neuro-muscular junction is based on experiments and literature references. Endogenous ATP was found to inhibit the transmitter release due to a direct interaction with the P2 receptors on the motor nerve endings, and to modulate development of postsynaptic potentiation due to interaction with cholinoreceptors of the postsynaptic membrane. 相似文献
8.
1. The actions of the calcium channel blocker verapamil were studied at the neuromuscular junction of the frog Rana pipiens. 2. In the presence of 50 microM verapamil, subthreshold endplate potentials were produced, and the quantal content was reduced by a factor of 3. 3. Verapamil (10-50 microM) also reduced the postjunctional membrane sensitivity as measured by (a) carbachol iontophoresis and (b) miniature endplate potential amplitude. In addition, verapamil had a strong inhibitory effect on the postjunctional membrane response to repetitive iontophoretic application of carbachol. 4. Thus, verapamil has both pre- and postsynaptic actions at the neuromuscular junction. 相似文献
9.
神经肌肉接头作为突触解剖、生理和发育的模型已被研究了一个多世纪。成像技术提供了诸多关于神经肌肉接头的信息,其中一些技术是专为观察该突触的结构和功能而发展起来的。本文回顾了神经肌肉接头研究中几个重要方面的发展史,包括其结构、N型乙酰胆碱受体的分布、突触小泡释放,以及神经肌肉接头的发育。 相似文献
10.
11.
F Rupp W Hoch J T Campanelli T Kreiner R H Scheller 《Current opinion in neurobiology》1992,2(1):88-93
Agrin is a component of the synaptic extracellular matrix and may regulate the organization of acetylcholine receptors and other synaptic molecules in both synapse regeneration and development. Analyses of cDNAs encoding agrin define a number of structural domains, including regions of homology to laminin, Kazal protease inhibitors, and epidermal growth factor repeats. 相似文献
12.
Activity and synapse elimination at the neuromuscular junction 总被引:2,自引:0,他引:2
Wesley J. Thompson 《Cellular and molecular neurobiology》1985,5(1-2):167-182
The neuromuscular junction undergoes a loss of synaptic connections during early development. This loss converts the innervation of each muscle fiber from polyneuronal to single. During this change the number of motor neurons remains constant but the number of muscle fibers innervated by each motor neuron is reduced. Evidence indicates that a local competition among the inputs on each muscle fiber determines which inputs are eliminated. The role of synapse elimination in the development of neuromuscular circuits, other than ensuring a single innervation of each fiber, is unclear. Most evidence suggests that the elimination plays little or no role in correcting for errant connections. Rather, it seems that connections are initially highly specific, in terms of both which motor neurons connect to which muscles and which neurons connect to which particular fibers within these muscles. A number of attempts have been made to determine the importance of neuromuscular activity during early development for this rearrangement of synaptic connections. Experiments reducing neuromuscular activity by muscle tenotomy, deafferentation and spinal cord section, block of nerve impulse conduction with tetrodotoxin, and the use of postsynaptic and presynaptic blocking agents have all shown that normal activity is required for normal synapse elimination. Most experiments in which complete muscle paralysis has been achieved show that activity may be essential for the occurrence of synapse elimination. Furthermore, experiments in which neuromuscular activity has been augmented by external stimulation show that synapse elimination is accelerated. A plausible hypothesis to explain the activity dependence of neuromuscular synapse elimination is that a neuromuscular trophic agent is produced by the muscle fibers and that this production is controlled by muscle-fiber activity. The terminals on each fiber compete for the substance produced by that fiber. Inactive fibers produce large quantities of this substance; on the other hand, muscle activity suppresses the level of synthesis of this agent to the point where only a single synaptic terminal can be maintained. Inactive muscle fibers would be expected to be able to maintain more nerve terminals. The attractiveness of this scheme is that it provides a simple feedback mechanism to ensure that each fiber retains a single effective input. 相似文献
13.
Synaptic vesicle pools at the frog neuromuscular junction 总被引:12,自引:0,他引:12
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool. 相似文献
14.
Martin PT 《Glycobiology》2002,12(1):1R-7R
Synapses are the fundamental units of connectivity that link together the nervous system. Lectin studies from 30 years ago suggested that specific glycans are concentrated at neuromuscular synapses in the peripheral nervous system and at excitatory synapses in the brain. Subsequent studies have confirmed that particular glycan structures are localized at these synapses, including polysialic acid, high mannose, the cytotoxic T cell antigen, and forms of heparan sulfate. Though the role of these molecules in synapse formation and function is still poorly understood, there is increasing evidence that the function of agrin, a synaptogenic factor in neuromuscular formation, is modulated by several glycans. In addition, the recent generation of ST8SiaIV null mice strongly suggests a role for polysialic acid in synaptic plasticity in the some regions of the central nervous system. 相似文献
15.
The time course of carbachol-induced desensitization onset and recovery of sensitivity after desenitization have been compared at the frog neuromuscular junction. The activation-desensitization sequence was determined from input conductance measurements using potassium-depolarized muscle preparations. Both desensitization onset and recovery from desensitization could be adequately described by single time constant expressions, with tauonset being considerably shorter than taurecovery. In nine experiments, tauonset was 13+/-1.3 s and taurecovery was 424+/-51 s with 1 mM carbachol. Elevating the external calcium or carbachol concentration accelerated desensitization onset without changing the recovery of sensitivity after equilibrium desensitization. Desensitization onset was accelerated by a prior activation-desensitization sequence to an extent determined by the recovery interval that followed the initial carbachol application. The time course of return of tauonset was closely parallel to, but slower than the time course of recovery of sensitivity. These results are consistent with a cyclic model in which intracellular calcium is a factor controlling the rate of development of desensitization. 相似文献
16.
This review considers the relative roles of sprouting stimuli, perisynaptic Schwann cells and neuromuscular activity in axonal sprouting at the neuromuscular junction in partially denervated muscles. A number of sprouting stimuli, including insulin-like growth factor II, which are generated from inactive muscle fibers in partially denervated and paralyzed skeletal muscles, has been considered. There is also evidence that perisynaptic Schwann cells induce and guide axonal sprouting in adult partially denervated muscles. Excessive neuromuscular activity significantly reduces bridging of perisynaptic Schwann cell processes between innervated and denervated endplates and thereby inhibits axonal sprouting in partially denervated adult muscles. Elimination of neuromuscular activity is also detrimental to sprouting in these muscles, suggesting that calcium influx into the nerve is crucial for axonal sprouting. The role of neuromuscular activity in axonal sprouting will be considered critically in the context of the roles of sprouting stimuli and perisynaptic Schwann cells in the process of axonal sprouting. 相似文献
17.
18.
A decrease in the amplitude of the miniature and evoked end-plate potentials, as well as a change in the course of facilitation and depression of the end-plate potentials under rhythmic stimulation, were observed in psychosine-treated preparations of the cutaneous-pectoral muscle of the frog. The results of electron microscopic investigations indicate changes in the structure of synaptic Schwann cells enveloping the motor terminals and disturbances of the inner mesaxon structure of the myelinated axons.A. A. Ukhtomskii Institute of Physiology, Saint Petersburg University. Translated from Neirofiziologiya, Vol. 24, No. 4, pp. 482–490, July–August, 1992. 相似文献
19.
The effects were studied of ethimizol, a substance activating memory processes, on features of synaptic transmission during experiments on frog cutaneous pectoris muscle. It was found that the presynaptic action of ethimizol consists of raising the frequency of miniature potentials, when used at a concentration of 0.5–10 mM, and modulating quantal content of synaptic transmission due to changes in binomial quantal release parameters p and n when 0.5–2 mM ethimizol was used. This substance facilitated transmission at synapses with a low initial level of transmitter release. This substance facilitated transmission at synapses with a low initial level of transmitter release. Ethimizol was also found to have a postsynaptic action, consisting of reducing amplitude at a concentration of 5–10 mM and prolonging synaptic currents and potentials when concentrations of 0.5–10 mM were used. The latter effect produced a considerable increase in the time integral of endplate potentials. The postsynaptic action of ethimizol is perhaps seen in its effects on features of postsynaptic ionic channels. The effects of ethimizol are discussed with a view to how it may act within the central nervous system as a nonspecific modulator.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 757–763, November–December, 1985. 相似文献