首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The directed differentiation of mesenchymal stem cells (MSCs) is tightly controlled by a complex network. Wnt signaling pathways have an important function in controlling the fate of MSCs. However, the mechanism through which Wnt/β-catenin signaling is regulated in differentiation of MSCs remains unknown. SIRT1 plays an important role in the regulation of MSCs differentiation.

Results

This study aimed to determine the effect of sirtuin 1 (SIRT1) on adipogenesis and myogenic differentiation of C3H10T1/2 cells. First, the MSC commitment and differentiation model was established by using 5-azacytidine. Using the established model, C3H10T1/2 cells were treated with SIRT1 activator/inhibitor during differentiation. The results showed that resveratrol inhibits adipogenic differentiation and improves myogenic differentiation, whereas nicotinamide promotes adipogenic differentiation. Notably, during commitment, resveratrol blocked adipocyte formation and promoted myotubes differentiation, whereas nicotinamide enhanced adipogenic potential of C3H10T1/2 cells. Furthermore, resveratrol elevated the expression of Cyclin D1 and β-catenin in the early stages. The luciferase assay showed that knockdown SIRT1 inhibits Wnt/β-catenin signaling, while resveratrol treatment or overexpression SIRT1 activates Wnt/β-catenin signaling. SIRT1 suppressed the expression of Wnt signaling antagonists sFRP2 and DACT1. Knockdown SIRT1 promoted adipogenic potential of C3H10T1/2 cells, whereas overexpression SIRT1 inhibited adipogenic differentiation and promoted myogenic differentiation.

Conclusions

Together, our results suggested that SIRT1 inhibits adipogenesis and stimulates myogenic differentiation by activating Wnt signaling.
  相似文献   

3.

Background

Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms.

Methods

SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of β-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs.

Results

SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear β-catenin in vitro and in vivo. In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2. WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1-impaired osteogenic differentiation potential.

Conclusions

The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration.
  相似文献   

4.

Objectives

To explore potential effects of recombinant human fibroblast growth factor 20 (rhFGF20) in the growth of cultured mouse vibrissal follicles.

Results

The growth of cultured mouse vibrissal follicles was significantly induced by rhFGF20 in a dose dependent pattern in the in vitro vibrissal follicle organ culture model. However, too high concentration of rhFGF20 could inhibit the growth of vibrissal follicles. We further demonstrated that rhFGF20 stimulated the proliferation of hair matrix cells and activated Wnt/β-catenin signaling pathway.

Conclusions

The rhFGF20 might be a potential therapeutic agent to treat hair loss disorders.
  相似文献   

5.

Objective

To study whether miR-98 participates in the effects of nicotine on myocardial differentiation.

Results

By western blot, MTT and flow cytometry assays, we found that nicotine suppresses P19 cell differentiation into cardiomyocytes and apoptosis, and promotes proliferation, while restoration of miR-98 relieves the inhibitory effect of nicotine on the P19 cell differentiation. By target prediction analysis and luciferase reporter assay, we observed that miR-98 inhibits the protein expression of Wnt1 by directly acting on the 3′-UTR of Wnt1 mRNA. We assumed that the effect of miR-98 on Wnt1 might alter the activity of the Wnt1/β-catenin signaling pathway and be associated with myocardial differentiation. In summary, nicotine restrains differentiation of P19 cells into cardiomyocytes and decreases the level of miR-98.

Conclusions

Restoration of miR-98 relieves the inhibitory effect of nicotine on differentiation of P19 cells via targeting the 3′-UTR of Wnt1, which offers novel insights into our understanding of underlying molecular mechanisms of congenital heart defects.
  相似文献   

6.

Background

Canonical Wnt signals, transduced by stabilized β-catenin, play similar roles across animals in maintaining stem cell pluripotency, regulating cell differentiation, and instructing normal embryonic development. Dysregulated Wnt/β-catenin signaling causes diseases and birth defects, and a variety of regulatory processes control this pathway to ensure its proper function and integration with other signaling systems. We previously identified GTP-binding protein 2 (Gtpbp2) as a novel regulator of BMP signaling, however further exploration revealed that Gtpbp2 can also affect Wnt signaling, which is a novel finding reported here.

Results

Knockdown of Gtpbp2 in Xenopus embryos causes severe axial defects and reduces expression of Spemann-Mangold organizer genes. Gtpbp2 knockdown blocks responses to ectopic Wnt8 ligand, such as organizer gene induction in ectodermal tissue explants and induction of secondary axes in whole embryos. However, organizer gene induction by ectopic Nodal2 is unaffected by Gtpbp2 knockdown. Epistasis tests, conducted by activating Wnt signal transduction at sequential points in the canonical pathway, demonstrate that Gtpbp2 is required downstream of Dishevelled and Gsk3β but upstream of β-catenin, which is similar to the previously reported effects of Axin1 overexpression in Xenopus embryos. Focusing on Axin in Xenopus embryos, we find that knockdown of Gtpbp2 elevates endogenous or exogenous Axin protein levels. Furthermore, Gtpbp2 fusion proteins co-localize with Dishevelled and co-immunoprecipitate with Axin and Gsk3b.

Conclusions

We conclude that Gtpbp2 is required for canonical Wnt/β-catenin signaling in Xenopus embryos. Our data suggest a model in which Gtpbp2 suppresses the accumulation of Axin protein, a rate-limiting component of the β-catenin destruction complex, such that Axin protein levels negatively correlate with Gtpbp2 levels. This model is supported by the similarity of our Gtpbp2-Wnt epistasis results and previously reported effects of Axin overexpression, the physical interactions of Gtpbp2 with Axin, and the correlation between elevated Axin protein levels and lost Wnt responsiveness upon Gtpbp2 knockdown. A wide variety of cancer-causing Wnt pathway mutations require low Axin levels, so development of Gtpbp2 inhibitors may provide a new therapeutic strategy to elevate Axin and suppress aberrant β-catenin signaling in cancer and other Wnt-related diseases.
  相似文献   

7.

Background

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by the histopathological pattern of usual interstitial pneumonia and is associated with a high mortality rate. Recently, lung resident mesenchymal stem cells (LR-MSCs) have been identified as an important contributor to myofibroblast activation in pulmonary fibrosis. Macrophages are also believed to play a critical role in pulmonary fibrosis. However, the underlying connections between LR-MSCs and macrophages in the pathogenesis of pulmonary fibrosis are still elusive.

Methods

In this study, we investigated the interaction between LR-MSCs and macrophages using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system.

Results

Here, we show that blocking pulmonary macrophage infiltration attenuated bleomycin-induced pulmonary fibrosis. In addition, as determined by flow cytometry, we discovered that the recruited macrophages in fibrotic lungs of bleomycin-treated mice were mainly M2 macrophages. In particular, we found that M2, rather than M1 macrophages, promoted myofibroblast differentiation of LR-MSCs. Moreover, we demonstrated that suppression of the Wnt/β-catenin signaling pathway could attenuate myofibroblast differentiation of LR-MSCs induced by M2 macrophages and bleomycin-induced pulmonary fibrosis. Tissue samples from IPF patients confirmed the infiltration of M2 macrophages and activation of Wnt/β-catenin signaling pathway.

Conclusion

In summary, this study furthered our understanding of the pulmonary fibrosis pathogenesis and highlighted M2 macrophages as a critical target for treating pulmonary fibrosis.
  相似文献   

8.
9.

Objective

To study the effects of CTNNB1 gene knockout by CRISPR-Cas9 technology on cell adhesion, proliferation, apoptosis, and Wnt/β-catenin signaling pathway.

Results

CTNNB1 gene of HEK 293T cells was knocked out by CRISPR-Cas9. This was confirmed by sequencing and western blotting. Methylthiazolyl-tetrazolium bromide assays indicated that deletion of β-catenin significantly weakened adhesion ability and inhibited proliferation rate (P < 0.01) of HEK 293T cells. Nevertheless, deletion of β-catenin did not affect apoptosis of HEK 293T cells, which was analyzed by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. In addition, expression level of GSK-, CCND1, and CCNE1 detected by qPCR and expression level of N-Cadherin and cyclin D1 detected by western blotting were significantly decreased (P < 0.01) while expression of γ-catenin detected by western blotting was significantly increased (P < 0.001).

Conclusions

Knockout of CTNNB1 disturbed Wnt/β-catenin signaling pathway and significantly inhibited adhesion and proliferation of HEK 293T cells.
  相似文献   

10.

Background

Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. The aminotermini of LRP and Fz were reported to associate only in the presence of Wnt, implying that Wnt ligands form a trimeric complex with two different receptors. However, it was recently reported that LRPs activate the Wnt/β-catenin pathway by binding to Axin in a Dishevelled – independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize β-catenin. Thus, it is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/β-catenin pathway. The question then arises whether both receptors are absolutely required to transduce Wnt signals.

Results

We have established a sensitive luciferase reporter assay in Drosophila S2 cells to determine the level of Wg – stimulated signaling. We demonstrate here that Wg can synergize with DFz2 and function cooperatively with LRP to activate the β-catenin/Armadillo signaling pathway. Double-strand RNA interference that disrupts the synthesis of either receptor type dramatically impairs Wg signaling activity. Importantly, the pronounced synergistic effect of adding Wg and DFz2 is dependent on Arrow and Dishevelled. The synergy requires the cysteine-rich extracellular domain of DFz2, but not its carboxyterminus. Finally, mammalian LRP6 and its activated forms, which lack most of the extracellular domain of the protein, can activate the Wg signaling pathway and cooperate with Wg and DFz2 in S2 cells. We also show that the aminoterminus of LRP/Arr is required for the synergy between Wg and DFz2.

Conclusion

Our study indicates that Wg signal transduction in S2 cells depends on the function of both LRPs and DFz2, and the results are consistent with the proposal that Wnt/Wg signals through the aminoterminal domains of its dual receptors, activating target genes through Dishevelled.
  相似文献   

11.

Background

Ovarian cancer is a common type of gynecological malignancies, and is the fifth leading cause of cancer-related death in women in the United States. MiR-429 and KIAA0101 have been found to be involved in several human malignancies, respectively. However, the role of miR-429 and KIAA0101, and the correlation between them during development of epithelial ovarian cancer (EOC) remain to be investigated.

Methods

The expression of KIAA0101 in EOC tissues and cells was measured by Quantitative real-time PCR, western blot, and immunochemistry. Cell proliferation assay, colony formation assay, and transwell assay was performed to assess the role of miR-429 and KIAA0101 in regulation of proliferation, migration, and chemoresistance of EOC cells. Luciferase assay was used to test the Wnt/β-catenin signaling activity in response to depletion of KIAA0101 and overexpression of miR-429.

Results

We found that KIAA0101 was upregulated in metastatic EOC tissues, compared to primary EOC tissues, and KIAA0101 was required for the migration activity and chemoresistance of EOC cells by enhancing Wnt/β-catenin signaling. Furthermore, we revealed KIAA0101 is direct target of miR-429. Similar to knockdown of KIAA0101, overexpression of miR-429 reduced invasion and chemoresistance of EOC cells. Co-transfection of KIAA0101 partially abrogates the inhibitory effects on invasion and chemoresistance in EOC cells.

Conclusions

KIAA0101, a target gene of miR-429, was upregulated in the metastatic EOC tissues, and enhanced the migration activity and chemoresistance of EOC cells. Both miR-429 and KIAA0101 may represent the potential therapeutic targets of EOC.
  相似文献   

12.

Background

Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.

Methods

Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results

Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.

Conclusion

EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
  相似文献   

13.

Background

Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC.

Methods

miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis.

Results

Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins.

Conclusion

Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.
  相似文献   

14.

Background

The involvement of Wnt in carcinogenesis and progression of pancreatic cancer is currently intensely discussed. We evaluated activation of the Wnt signaling pathway by using a Wnt reporter mouse strain expressing β-galactosidase under the control of the Axin2 promotor during pancreatitis induced formation of precancerous lesions. We also evaluated activation of Wnt signaling during interaction of pancreatic cancer with the tumor stroma.

Results

Activation of Wnt signaling was observed during acinar-to-ductal metaplasia after chronic as well as acute pancreatitis. Activation of Wnt signaling was also noticed during growth of pancreatic cancer in an orthotopic syngeneic pancreas cancer model. Activation of Wnt signaling was, however, not observed in carcinoma associated fibroblasts, but was detected in few cell clusters inside the tumor. Genetic ablation of Axin2 significantly reduced body weight without having a major impact on blood glucose concentration. However, ablation of Axin2 had no influence on the observed β-galactosidase positive cell clusters or on tumor weight.

Conclusion

These data demonstrate that the Wnt signaling pathway is activated during acinar-to-ductal metaplasia after injury to the pancreas. However these data do not support a major role of Wnt signaling or of Axin2 in carcinoma associated fibroblasts and tumor growth.
  相似文献   

15.

Background

We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis.

Methods

Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells.

Results

Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells.

Conclusions

Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
  相似文献   

16.

Background

Airway epithelial cells (AEC) act as the first line of defence in case of lung infections. They constitute a physical barrier against pathogens and they participate in the initiation of the immune response. Yet, the modalities of pathogen recognition by AEC and the consequences on the epithelial barrier remain poorly documented.

Method

We investigated the response of primary human AEC to viral (polyinosinic-polycytidylic acid, poly(I:C)) and bacterial (lipopolysaccharide, LPS) stimulations in combination with the lung remodeling factor Transforming Growth Factor-β (TGF-β).

Results

We showed a strong production of pro-inflammatory cytokines (Interleukin (IL)-6, Tumor Necrosis Factor α, TNFα) or chemokines (CCL2, CCL3, CCL4, CXCL10, CXCL11) by AEC stimulated with poly(I:C). Cytokine and chemokine production, except CXCL10, was Toll Like Receptor (TLR)-3 dependent and although they express TLR4, we found no cytokine production after LPS stimulation. Poly(I:C), but not LPS, synergised with TGF-β for the production of matrix metalloproteinase-9 (MMP-9) and fibronectin. Mechanistic analyses suggest the secretion of Wnt ligands by AEC along with a degradation of the cellular junctions after poly(I:C) exposure, leading to the release of β-catenin from the cell membrane and stimulation of the Wnt/β-catenin pathway.

Conclusion

Our results highlight the cross talk between TGF-β and TLR signaling in bronchial epithelium and its impact on the remodeling process.
  相似文献   

17.

Background

MiR-9 is a small non-coding RNA that is highly conserved between species and primarily expressed in the central nervous system (CNS). It is known to influence proliferation and neuronal differentiation in the brain and spinal cord of different vertebrates. Different studies have pointed to regional and species-specific differences in the response of neural progenitors to miR-9.

Methods

In ovo and ex ovo electroporation was used to overexpress or reduce miR-9 followed by mRNA in situ hybridisation and immunofluorescent stainings to evaluate miR- expression and the effect of changed miR-9 expression.

Results

We have investigated the expression and function of miR-9 during early development of the mid-hindbrain region (MH) in chick. Our analysis reveals a closer relationship of chick miR-9 to mammalian miR-9 than to fish and a dynamic expression pattern in the chick neural tube. Early in development, miR-9 is diffusely expressed in the entire brain, bar the forebrain, and it becomes more restricted to specific areas of the CNS at later stages. MiR-9 overexpression at HH9–10 results in a reduction of FGF8 expression and premature neuronal differentiation in the mid-hindbrain boundary (MHB). Within the midbrain miR-9 does not cause premature neuronal differentiation it rather reduces proliferation in the midbrain.

Conclusion

Our findings indicate that miR-9 has regional specific effects in the developing mid-hindbrain region with a divergence of response of regional progenitors.
  相似文献   

18.

Background

Fabrication of porous scaffolds with great biocompatibility and osteoinductivity to promote bone defect healing has attracted extensive attention.

Methods

In a previous study, novel lanthanum phosphate (LaPO4)/chitosan (CS) scaffolds were prepared by distributing 40- to 60-nm LaPO4 nanoparticles throughout plate-like CS films.

Results

Interconnected three dimensional (3D) macropores within the scaffolds increased the scaffold osteoconductivity, thereby promoting cell adhesion and bone tissue in-growth. The LaPO4/CS scaffolds showed no obvious toxicity and accelerated bone generation in a rat cranial defect model. Notably, the element La in the scaffolds was found to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the Wnt/β-catenin signalling pathway and induced high expression of the osteogenesis-related genes alkaline phosphatase, osteocalcin and Collagen I (Col-I). Moreover, the LaPO4/CS scaffolds enhanced bone regeneration and collagen fibre deposition in rat critical-sized calvarial defect sites.

Conclusion

The novel LaPO4/CS scaffolds provide an admirable and promising platform for the repair of bone defects.
  相似文献   

19.

Background

Activation of the Wnt signalling cascade is primarily based on the interplay between Wnt ligands, their receptors and extracellular modulators. One prominent family of extracellular modulators is represented by the SFRP (secreted Frizzled-related protein) family. These proteins have significant similarity to the extracellular domain of Frizzled receptors, suggesting that they bind Wnt ligands and inhibit signalling. The SFRP-type protein Fz4-v1, a splice variant of the Frizzled-4 receptor found in humans and Xenopus, was shown to augment Wnt/β-catenin signalling, and also interacts with those Wnt ligands that act on β-catenin-independent Wnt pathways.

Findings

Here we show that Xenopus Fz4-v1 can activate and inhibit the β-catenin-dependent Wnt pathway. Gain-of-function experiments revealed that high Wnt/β-catenin activity is inhibited by low and high concentrations of Fz4-v1. In contrast, signals generated by low amounts of Wnt ligands were enhanced by low concentrations of Fz4-v1 but were repressed by high concentrations. This biphasic activity of Fz4-v1 was not observed in non-canonical Wnt signalling. Fz4-v1 enhanced β-catenin-independent Wnt signalling triggered by either low or high doses of Wnt11. Antisense morpholino-mediated knock-down experiments demonstrated that in early Xenopus embryos Fz4-v1 is required for the migration of cranial neural crest cells and for the development of the dorsal fin.

Conclusions

For the first time, we show that a splice variant of the Frizzled-4 receptor modulates Wnt signalling in a dose-dependent, biphasic manner. These results also demonstrate that the cystein-rich domain (CRD), which is shared by Fz4-v1 and SFRPs, is sufficient for the biphasic activity of these secreted Wnt modulators.
  相似文献   

20.

Background

Wnt6 is an evolutionarily ancient member of the Wnt family. In Drosophila, Wnt6 loss-of-function animals have not yet been reported, hence information about fly Wnt6 function is lacking. In wing discs, Wnt6 is expressed at the dorsal/ventral boundary in a pattern similar to that of wingless, an important regulator of wing size. To test whether Wnt6 also contributes towards wing size regulation, we generated Wnt6 knockout flies.

Results

Wnt6 knockout flies are viable and have no obvious defect in wing size or planar cell polarity. Surprisingly, Wnt6 knockouts lack maxillary palps. Interestingly, Wnt6 is absent from the genome of hemipterans, correlating with the absence of maxillary palps in these insects.

Conclusions

Wnt6 is important for maxillary palp development in Drosophila, and phylogenetic analysis indicates that loss of Wnt6 may also have led to loss of maxillary palps on an evolutionary time scale.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号