首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.  相似文献   

2.
Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32 g/L, 18.92 mg/L and 60.43%, respectively, by using corn steep liquor at 0–5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47 g/L, 31.74 mg/L, and 70.41%, respectively, by using yeast extract at 30–35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains.  相似文献   

3.
A new strain of the yeast Metschnikowia koreensis was grown in shake flasks and a stirred bioreactor for the production of carbonyl reductase. The optimal conditions in the bioreactor for maximizing the biomass specific activity of the enzyme were found to be: a medium composed of glucose (20 g/L), peptone (5 g/L), yeast extract (5 g/L) and zinc sulfate (0.3g/L); the pH controlled at 7; the temperature controlled at 25 °C; an agitation speed of 500 rpm; and an aeration rate of 0.25 vvm. In the bioreactor, a biomass specific enzyme activity of 115.6 U/gDCW was obtained and the maximum biomass concentration was 15.3 gDCW/L. The biomass specific enzyme activity obtained in the optimized bioreactor culture was 11-fold higher than the best result achieved in shake flasks. The bioreactor culture afforded a 2.7-fold higher biomass concentration than could be attained in shake flasks.  相似文献   

4.
Strains of Yarrowia lipolytica were engineered to express the poly-3-hydroxybutyrate (PHB) biosynthetic pathway. The genes for β-ketothiolase, NADPH-dependent acetoacetyl-CoA reductase, and PHB synthase were cloned and inserted into the chromosome of Y. lipolytica. In shake flasks, the engineered strain accumulated PHB to 1.50 and 3.84% of cell dry weight in complex medium supplemented with glucose and acetate as carbon source, respectively. In fed-batch fermentation using acetate as sole carbon source, 7.35 g/l PHB (10.2% of cell dry weight) was produced. Selection of Y. lipolytica as host for PHB synthesis was motivated by the fact that this organism is a good lipids producer, which suggests robust acetyl-CoA supply also the precursor of the PHB pathway. Acetic acid could be supplied by gas fermentation, anaerobic digestion, and other low-cost supply route.  相似文献   

5.
The present study describes the enhanced production and purification of lovastatin by Aspergillus terreus in submerged batch fermentation. The enhancement of lovastatin production from A. terreus was attempted by random mutagenesis using ultraviolet radiations and nitrous acid. UV mutants exhibited increased efficiency for lovastatin production as compared with nitrous acid mutants. Among all the mutants developed, A. terreus UV-4 was found to be the hyper producer of lovastatin. This mutant gave 3.5-fold higher lovastatin production than the wild culture of A. terreus NRRL 265. Various cultural conditions were also optimized for hyper-producing mutant strain. 5 % glucose as carbon source, 1.5 % corn steep liquor as nitrogen source, initial pH value of 6, 120 h of incubation period, and 28 °C of incubation temperature were found as best parameters for higher lovastatin production in shake flasks. Production of lovastatin by wild and mutant strains of A. terreus was also scaled up to laboratory scale fermentor. The fermentation process was conducted at 28 °C, 200 rpm agitation, and 1vvm air flow rate without pH control. After the optimization of cultural conditions in 250 ml Erlenmeyer flasks and scaling up to laboratory scale fermentor, the mutant A. terreus UV-4 gave eightfold higher lovastatin production (3249.95 μg/ml) than its production by wild strain in shake flasks. Purification of lovastatin was carried out by solvent extraction method which yielded 977.1 mg/l of lovastatin with 98.99 % chromatographic purity and 26.76 % recovery. The crystal structure of lovastatin was determined using X-ray diffraction analysis which is first ever reported.  相似文献   

6.
The effect of initial culture pH and inducer concentration on xanthine oxidase (XOD) fermentation in shake flasks was first carried out. The results showed that the optimum initial culture pH and inducer concentration were 8.6 and 3.6 g/l, respectively. Batch fermentation of XOD by Arthrobacter M3 in a 7.5-l fermentor was then tested under various pH conditions ranging from 7.6 to 8.6. Based on the analysis of the obtained kinetic parameters, a pH-shift strategy in batch fermentation was implemented to enhance the XOD fermentation. In this strategy, the initial culture pH was set at 8.6 without control and was maintained at 7.6 after the biomass reached 2.0 g/l DCW. XOD production (P) and final average yield coefficient for production on biomass (FAYp/x) in this strategy reached 7,415.3 U/l and 1,229.7 U/g, respectively, which were significantly higher than the results from the other four protocols. In pH-shift batch fermentation, the Luedeking–Piret equation for product accumulation and the Luedeking–Piret-like equation for substrate consumption fit well with the experimental values. The correlation coefficients (R 2) of these two fitting curves were 0.977 and 0.992, respectively.  相似文献   

7.
对桦褐孔菌深层发酵培养基进行了筛选,以菌丝体及甾类化合物产量为目标对发酵条件进行了优化,确定最佳发酵条件为:30g/L葡萄糖,2.5g/L黄豆粉,2.5g/L蛋白胨,3g/L KH2PO4,0.8g/L MgSO4,0.8g/L CaSO4,初始pH4.0,接种量15%,装液量100mL/500mL,转速150r/min,28℃恒温培养。此条件下培养11d,菌丝体干重达12.52g/L,甾体类化合物的产量达112.44mg/L。  相似文献   

8.
Cheese whey fermentation with Kluyveromyces marxianus was carried out at 40 °C and pH 3.5 to examine simultaneous single-cell protein production and chemical oxygen demand (COD) removal, determine the fate of soluble whey protein and characterize intermediate metabolites. After 36 h of batch fermentation, the biomass concentration increased from 2.0 to 6.0 g/L with 55 % COD reduction (including protein), whereas soluble whey protein concentration decreased from 5.6 to 4.1 g/L. It was confirmed through electrophoresis (SDS-PAGE) that the fermented whey protein was different from native whey protein. HPLC and GC–MS analysis revealed a change in composition of organic compounds post-fermentation. High inoculum concentration in batch fermentation resulted in an increase in biomass concentration from 10.3 to 15.9 g/L with 80 % COD reduction (including protein) within 36 h with residual protein concentration of 4.5 g/L. In third batch fermentation, the biomass concentration increased from 7.3 to 12.4 g/L with 71 % of COD removal and residual protein concentration of 4.3 g/L after 22 h. After 22 h, the batch process was shifted to a continuous process with cell recycle, and the steady state was achieved after another 60 h with biomass yield of 0.19 g biomass/g lactose and productivity of 0.26 g/L h. COD removal efficiency was 78–79 % with residual protein concentration of 3.8–4.2 g/L. The aerobic continuous fermentation process with cell recycle could be applied to single-cell protein production with substantial COD removal at low pH and high temperature from cheese whey.  相似文献   

9.
Bioconversion of biodiesel-derived crude glycerol into carotenoids and lipids was investigated by a microbial conversion of an oleaginous red yeast Sporidiobolus pararoseus KM281507. The methanol content in crude glycerol (0.5%, w/v) did not show a significant effect on biomass production by strain KM281507. However, demethanolized crude glycerol significantly supported the production of biomass (8.64?±?0.13?g/L), lipids (2.92?±?0.03?g/L), β-carotene (15.76?±?0.85?mg/L), and total carotenoids (33.67?±?1.28?mg/L). The optimal conditions suggested by central composite design were crude glycerol concentration (55.04?g/L), initial pH of medium (pH 5.63) and cultivation temperature (24.01°C). Under these conditions, the production of biomass, lipids, β-carotene, and total carotenoids were elevated up to 8.83?±?0.05, 4.00?±?0.06?g/L, 27.41?±?0.20, and 53.70?±?0.48?mg/L, respectively. Moreover, an addition of olive oil (0.5???2.0%) dramatically increased the production of biomass (14.47?±?0.15?g/L), lipids (6.40?±?0.09?g/L), β-carotene (54.43?±?0.95?mg/L), and total carotenoids (70.92?±?0.51?mg/L). The oleic acid content in lipids was also increased to 75.1% (w/w) of total fatty acids, indicating a good potential to be an alternative biodiesel feedstock. Meanwhile, the β-carotene content in total carotenoids was increased to 76.7% (w/w). Hence, strain KM281507 could be a good potential source of renewable biodiesel feedstock and natural carotenoids.  相似文献   

10.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

11.
Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.  相似文献   

12.
Most industrial production processes are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode which results in completely different physiological conditions than relevant for production conditions. This may lead to wrong selections of strains. Silicone elastomer discs containing glucose crystals were developed to realize fed-batch fermentation in shake flasks. No other device for feeding was required. Glucose was fed in this way to Hansenula polymorpha cultures controlled by diffusion. Two strains of H. polymorpha were investigated in shake flasks: the wild-type strain (DSM 70277) and a recombinant strain pC10-FMD (P(FMD)-GFP). The oxygen transfer rate (OTR) and respiratory quotient (RQ) of the cultures were monitored online in shake flasks with a Respiration Activity Monitoring System (RAMOS). Formation of biomass and green fluorescent protein (GFP), pH-drift and the metabolite dynamics of glucose, ethanol and acetic acid were measured offline. With the slow-release technique overflow metabolism could be reduced leading to an increase of 85% in biomass yield. To date, 23.4 g/L cell dry weight of H. polymorpha could be achieved in shake flask. Biomass yields of 0.38-0.47 were obtained which are in the same magnitude of laboratory scale fermentors equipped with a substrate feed pump. GFP yield could be increased by a factor of 35 in Syn6-MES mineral medium. In fed-batch mode 88 mg/L GFP was synthesized with 35.9 g/L fed glucose. In contrast, only 2.5 mg/L with 40 g/L metabolized glucose was revealed in batch mode. In YNB mineral medium over 420-fold improvement in fed-batch mode was achieved with 421 mg/L GFP at 41.3 g/L fed glucose in comparison to less than 1 mg/L in batch mode with 40 g/L glucose.  相似文献   

13.
2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.  相似文献   

14.
Shake flasks are widely used to culture microorganisms, but they do not allow for pH control without additional infrastructure. In the presence of a carbon source like glucose, culture pH typically decreases due to overflow metabolism and can limit the growth of microorganisms in shake flasks. In this study, we demonstrate the use of magnesium hydroxide-loaded pH managing hydrogels (m-pHmH) for in situ base release to counter the decrease in culture pH in shake flasks using Escherichia coli as a model organism, in both complex and mineral salts medium. Base release from m-pHmH is shown to increase with decreasing pH (22-fold increase in release rate from pH 8 to 5), thus providing feedback from culture pH. The addition of m-pHmH resulted in better pH maintenance and higher biomass yields of E. coli K12 in media containing glucose as a carbon source. The use of m-pHmH with additional buffer resulted in pH being maintained above 6.9 while pH decreases below 5 without m-pHmH. We demonstrate one application of such in situ pH management to increase the volumetric plasmid yield from E. coli in shake flask culture. In situ glucose release through a hydrogel to mimic fed-batch culture along with the addition of m-pHmH resulted in a 395 % increase in volumetric plasmid yield to 38 μg/ml in shake flask culture.  相似文献   

15.
Nitrogen limited but carbon excess condition was used to obtain high cellular lipid content and production. The maximum lipid production was 51 g/L, the lipid content in the dry cell was 60 %, and the lipid productivity was 0.53 g/L/h. In the fermentation, the content of lipid was raised from 20 % of dry cell weight to 60 %, and the proportion of oleic acid was raised from 66.8 to 72.5 %. Meanwhile, the metabolism of carotenoids switched to torulene, and its proportion was raised from 30 to 58 %. This was according to torulene had the better antioxidant ability than β-carotene to protect the strain from oxidative damage proved by their ABTS* radical scavenging activity and lipid peroxidation inhibition ability. Sporidiobolus pararoseus lipid was a good source of lipid not only because of its high oleic acid composition, but also the antioxidant ability of carotenoids in the lipid.  相似文献   

16.
The fungal species ofRhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30°C was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%–85.5% associated with 1.5–2.0 g/L fungal biomass produced in 36 h of fermentation.  相似文献   

17.
This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.  相似文献   

18.
The aim of the present study was to evaluate the effect of the initial caffeine concentration (1–8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4–14.8 g/L) was observed within a range of 2 to 4 g/L of initial caffeine concentration. At these initial caffeine concentrations, after 96 h of fermentation, 41–51 % of the initial caffeine was degraded. Using an initial caffeine concentration of 2–3 g/L, the highest specific growth rate was observed (μ?=?0.069 1/h). Biomass production decreased at 8 g/L of initial caffeine concentration. A. tamarii formed mainly pellets at all concentrations tested. The size of the pellet decreased at a caffeine concentration of 8 g/L.  相似文献   

19.
Five strains of naringin-degrading bacteria were isolated and found to be positive for extracellular naringinase activity. The one that showed highest activity in the selective medium was identified by 16S rRNA analysis as Bacillus methylotrophicus. The best combination of carbon–nitrogen source was determined by employing two-level full factorial analyses, comprising 24 experiments in shake flasks. Sucrose–yeast extract showed significant increase in naringinase activity (7.46 U/L) compared to the basal medium. Naringinase production was found to be inducible and naringin was found to be the best inducer among naringin, naringenin, hesperidin, and L-rhamnose. Inoculum size of 2% (v/v) and age of 48 hr favored naringinase and biomass production. Highest naringinase activity of 8 U/L was observed at the initial medium pH of 6. Response surface modeling was applied based on central composite design to determine the effects of three independent variables (sucrose, yeast extract, and naringin) and their mutual interactions. In total, 20 experiments were conducted and a statistical model was developed, which predicted naringinase production of 10.61 U/L. Subsequently, verification experiments were conducted and validity of the model was verified. Bioreactor studies conducted with the optimized medium showed an enzyme production of 12.05 U/L within 34 hr of fermentation.  相似文献   

20.
The nutritional medium requirement for biomass and triterpenoid production by Antrodia cinnamomea AC0623 strain was optimized. Box–Behnken was applied to optimize biomass and triterpenoid production. According to response surface methodology (RSM), the optimum concentrations of N-source were determined. The results indicate that when a submerged culture in shake flasks was operated at 28°C, initial pH 5.5, and rotation speed 105 rpm, the biomass and triterpenoid content in dry basis could be increased to 3.20% (w/w) and 31.8 mg/g, respectively. The experiments were further scaled up to 100- and 700-l fermentors. Higher content of triterpenoids (63.0 mg/g) was obtained in 700-l fermentations by means of the control of cultural conditions and the modification of medium composition based on the RSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号