首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon’s regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.  相似文献   

2.
VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation   总被引:2,自引:0,他引:2  
Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

4.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

5.
Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.  相似文献   

6.
Ficus (Moraceae) is a keystone group in tropical and subtropical forests with remarkable diversity of species and taxonomical challenges as a consequence of fig–pollinator coevolution. Ficus subsect. Frutescentiae includes about 30 species that are predominantly shrubs or small trees with Terminalia branching. Many of these species are difficult to delimit morphologically, and the group includes a tangle of uncertain taxa and incorrectly applied names. We conducted a phylogenetic analysis with internal and external transcribed spacer data (ITS and ETS) and data from 18 polymorphic microsatellite loci to evaluate the species status of the most perplexing members of this subsection. The results confirm the monophyly of subsect. Frutescentiae, with F. pedunculosa as sister to the rest. The F. erecta complex comprises approximately 17 taxa: F. erecta, F. abelii, F. boninsimae, F. nishimurae, F. iidaiana, F. gasparriniana var. laceratifolia, F. gasparriniana var. viridescens, F. pyriformis, F. stenophylla, F. fusuiensis, F. fengkaiensis, F. sinociliata, F. tannoensis, F. vaccinioides, F. formosana, F. pandurata, and F. periptera. The last five of these were supported as good species, while the others were not well supported by the present evidence. Evidence also supported the status of the non-F. erecta complex species including. F. pedunculosa, F. ischnopoda, F. heteromorpha, and F. variolosa. Ficus filicauda and F. neriifolia are possibly conspecific. The species status of F. potingensis should be restored and it should be treated as a member of section Eriosycea. Identification of the remaining taxa (F. gasparriniana var. esquirolii, F. ruyuanensis, F. daimingshanensis, F. chapaensis, F. changii, F. trivia, and F. tuphapensis) and their relationships to the F. erecta complex were not clarified. As a whole, only ten species in this subsection are confirmed, one is excluded, one is synonymous, and the others are either unresolved or short of samples. There appears to be a consistent genetic background among these unresolved groups, which suggests that repeated hybridization (as a result of pollinator host shifts) has filled up the interspecific gaps during the fig–pollinator coevolution process.  相似文献   

7.
A series of novel C18–C22 trans ω3 polyunsaturated fatty acids (PUFA) with a single trans double bond in the ω3 position was found in Northern and Southern Hemisphere strains of the marine haptophyte Imantonia rotunda. The novel ω3 PUFA were identified as 18:3(9c,12c,15t) (0.2–1.8 % of total fatty acids), 18:4(6c,9c,12c,15t) (1.9–4.1 %), 18:5 (3c,6c,9c,12c,15t) (0.7–8.8 %), 20:5(5c,8c,11c,14c,17t) (1.2–4.1 %) and 22:6(4c,7c,10c,13c,16c,19t) (0.3–4.3 %), and were accompanied by larger proportions of the all cis isomers: 18:3ω3(9,12,15) (2.7–3.5 %), 18:4ω3(6,9,12,15) (9.3–14.3 %), 18:5ω3(3,6,9,12,15) (7.8–18.5 %), 20:5ω3(5,8,11,14,17) (3.2–3.9 %), 22:5ω3(7,10,13,16,19) (0.1–0.3 %) and 22:6ω3(4,7,10,13,16,19) (2.3–5.2 %). GC analysis of FAME using a non-polar column did not reveal the trans isomers as they coeluted with the all cis PUFA. However, GC using a polar column resolved the trans PUFA from the all cis PUFA, with the trans isomers eluting before the all cis isomers. GC-MS of FAME fractionated by argentation solid-phase chromatography confirmed the molecular ions of all components. FAME were derivatized to form 4,4-dimethyloxazoline (DMOX) derivatives, and GC-MS revealed the same double bond positions for each trans and cis FAME. The results suggest that the ω3 trans double bond originated from the Δ15/ω3 desaturation of 18:2(9c,12c), suggesting that this desaturase has dual cis/trans activity in these species. These results indicate that 18:3(9c,12c,15?t) was the precursor trans isomer produced for the trans series and further desaturation by the common Δ6 desaturase to produce the trans tetraene and successive elongations and desaturations led to the subsequent series of trans ω3 PUFA isomers. To our knowledge, this is the first report of these trans ω3 isomers occurring in strains of I. rotunda. These trans ω3 PUFA may be used as biomarkers in marine food webs for this species and with their unique structure may be biologically active.  相似文献   

8.
The T7 antirestriction protein Ocr, encoded by 0.3 (ocr), specifically inhibits ATP-dependent type I restriction-modification systems. T7 0.3 (ocr) was cloned in pUC18. Ocr inhibited both restriction and modification activities of the type I restriction-modification system (EcoKI) in Escherichia coli K12. The Ocr F53D A57E mutant was obtained and proved to inhibit only restriction activity of EcoKI. The 0.3 (ocr) and Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P ltetO-1 promoter, strongly controlled by the TetR repressor. The bioluminescence intensity and luciferase content varied up to 5000-fold in E. coli K12 MG1655Z1 tetR+ (pZE21-luxCDABE) cells, depending on the environmental concentration of the inductor anhydrotetracycline. The antirestriction activity of Ocr and Ocr F53D A57E was studied as a function of their concentration in the cell. The dissociation constant K d, characterizing the binding with EcoKI, differed 1000-fold between Ocr and Ocr F53D A57E (10?10 M versus 10?7 M).  相似文献   

9.

Key message

A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS–LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed.

Abstract

Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites–leucine-rich repeat (NBS–LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.
  相似文献   

10.
The study of allelic variations affecting organogenic capacity is not only relevant for manipulating plant traits but also to understand the fundamental mechanisms involved in plant development. Here, we report the characterization of three tomato (Solanum lycopersicum) loci (RG3C, RG7H and RG8F) whose alleles from its wild relative Solanum pennellii enhance in vitro shoot and root regeneration. S. pennellii alleles were introgressed into tomato cv. Micro-Tom (MT), creating near-isogenic lines. We evaluated the time taken for shoot induction and acquisition of competence by quantifying organogenesis after transferring explants, respectively, from the shoot-inducing medium (SIM) to the basal medium (BM) and from root-inducing medium (RIM) to the SIM. Concomitantly, we monitored the expression of key developmental genes. MT-Rg3C and MT-Rg7H started shoot induction, respectively, at 48 and 24 h earlier than MT and MT-Rg8F, while MT-Rg3C and MT-Rg8F acquired competence 24 h before MT. The impact of MT-Rg3C and MT-Rg8F in the acquisition of competence to assume different fates is consistent with their effect enhancing both shoot and root regeneration. MT-Rg7H seems to affect shoot induction specifically, which is in agreement with the enhanced expression of the shoot-related genes WUSCHEL and SHOOT MERISTEMLESS. Phenotypic characterization of greenhouse-grown plants showed that Rg3C has increased branching when compared to MT. Conversely, the normal branching observed in MT-Rg7H and MT-Rg8F indicates that adventitious in vitro shoot formation and ex vitro axillary bud formation/outgrowth are induced by different genetic pathways. These natural variations are thus useful for breeding highly regenerating varieties without undesirable effects on plant architecture.  相似文献   

11.
Taxonomic and phylogenetic studies of the Funalia gallica species complex and its related species were carried out. The phylogenetic analyses were based on datasets of either combined ITS, nrLSU and RPB2 sequences or single ITS sequences. The results reveal that at least four strongly hispid to strigose Funalia species can be recognised, i.e. the cosmopolitan F. trogii, Eurasian F. gallica, North American “F. gallica” and a new species F. subgallica discovered from tropical China. Morphologically, F. subgallica is characterised by its strongly hispid to strigose pileal surface, large pores (1–3 per mm) and basidiospores (11–15?×?4–5 μm).  相似文献   

12.
BDNF and NT-4 (but not NT-3 or CNTF) significantly enhanced the outgrowth of early embryonic and adult regenerating RGC axons when provided with a supportive substrate in vitro. BDNF and NT-4 treatment transiently increased RGC axon outgrowth from E15 rat retinas but not from retinas at older embryonic ages. The transient effect of BDNF and NT-4 and the inability of the neurotrophins to promote outgrowth from older embryonic retinal explants suggests a time frame of neurotrophin action and that other chemical factors (target-derived or otherwise) may be necessary for the continued maintenance of developing RGC axons. BDNF and NT-4 also enhanced the outgrowth of regenerating axons from adult retinal explants, but appeared to have a more subtle effect on axon outgrowth, in that the growth-promoting effects of BDNF and NT-4 appeared continuous throughout the incubation period. The suppression of RGC axon outgrowth from embryonic and adult retinae cultured in trkB-IgG-containing medium suggests that the response of developing and regenerating axons, to BDNF and NT-4 are likely to occur through trkB signalling.  相似文献   

13.
The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4?×?22 factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug–lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1–F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug–Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.  相似文献   

14.
Allelic combinations of major photoperiodic (E1, E3, E4) and maturity (E2) genes have extended the adaptation of quantitative photoperiod sensitive soybean crop from its origin (China ~35 °N latitude) to both north (up to ~50 °N) and south (up to 40 °S) latitudes, but their allelic status and role in India (6–35 °N) are unknown. Loss of function and hypoactive alleles of these genes are known to confer photoinsensitivity to long days and early maturity. Early maturity has helped to adapt soybean to short growing season of India. We had earlier found that all the Indian cultivars are sensitive to incandescent long day (ILD) and could identify six insensitive accessions through screening 2071 accessions under ILD. Available models for ILD insensitivity suggested that identified insensitive genotypes should be either e3 /e4 or e1 (e1-nl or e1-fs) with either e3 or e4. We found that one of the insensitive accessions (EC 390977) was of e3 /e4 genotype and hybridized it with four ILD sensitive cultivars JS 335, JS 95-60, JS 93-05, NRC 37 and an accession EC 538828. Inheritance studies and marker-based cosegregation analyses confirmed the segregation of E3 and E4 genes and identified JS 93-05 and NRC 37 as E3E3E4E4 and EC 538828 as e3e3E4E4. Further, genotyping through sequencing, derived cleaved amplified polymorphic sequences (dCAPS) and cleaved amplified polymorphic sequences (CAPS) markers identified JS 95-60 with hypoactive e1-as and JS 335 with loss of function e3-fs alleles. Presence of photoperiodic recessive alleles in these two most popular Indian cultivars suggested for their role in conferring early flowering and maturity. This observation could be confirmed in F 2 population derived from the cross JS 95-60 × EC 390977, where individuals with e1-as e1-as and e4e4 genotypes could flower 7 and 2.4 days earlier, respectively. Possibility of identification of new alleles or mechanism for ILD insensitivity and use of photoinsensitivity in Indian conditions have been discussed.  相似文献   

15.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

16.
Our purpose was to evaluate the protective effect of three marine omega-3 sources, fish oil (FO), krill oil (KO), and green-lipped mussel (GLM) against cartilage degradation. Canine cartilage explants were stimulated with either 10 ng/mL interleukin-1β (IL-1β) or IL-1β/oncostatin M (10 ng/mL each) and then treated with various concentrations of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA; 3 and 30 μg/mL), FO, KO, or GLM (250, 500, and 1000 μg/mL) for 28 days. Gene expression was then investigated in primary canine chondrocytes. Our results showed that DHA and EPA as well as omega-3 sources could suppress matrix degradation in cytokine-induced cartilage explants by significantly reducing the increase of sulfated glycosaminoglycans (s-GAGs) and preserving uronic acid and hydroxyproline content (except GLM). These agents were not able to reduce IL-1β-induced IL1B and TNFA expression but were able to down-regulate the expression of the catabolic genes MMP1, MMP3, and MMP13 and up-regulate the anabolic genes AGG and COL2A1; FO and KO were especially effective. Our findings indicated that FO and KO were superior to GLM for their protective effect against proteoglycan and collagen degradation. Hence, FO and KO could serve as promising sources of chondroprotective agents.  相似文献   

17.
18.
Endelus (Kubaniellus) indicus sp. n. from India, E. (K.) lao sp. n. and E. (K.) khnzoriani sp. n. from Laos, E. (s. str.) sausai sp. n. from China, and E. (s. str.) dembickyi sp. n. from India are described, the two latter species are included in the Endelus bicarinatus Théry, 1932 species-group recently established by the author. E. collinus Obenberger, 1922 is included in this group; lectotype of this species is designated. Keys to species of the subgenus Kubaniellus and of the E. collinus group are provided. E. (K.) kareni Kalashian is for the first time recorded for Shaanxi Prov., E. pacholatkoi Kalashian, E. smaragdinus Desc. et Vill., and E collinus Obenb., for Laos (the latter species, also for Myanmar).  相似文献   

19.
20.

Key message

NtRING1 is a RING-finger protein with a putative E3 ligase activity. NtRING1 regulates HR establishment against different pathogens. Loss-/gain-of-function of NtRING1 altered early stages of HR phenotype establishment.

Abstract

Plant defence responses against pathogens often involve the restriction of pathogens by inducing a hypersensitive response (HR). cDNA clones DD11-39, DD38-11 and DD34-26 were previously obtained from a differential screen aimed at characterising tobacco genes with an elicitin-induced HR-specific pattern of expression. Our precedent observations suggested that DD11-39, DD38-11 and DD34-26 might play roles in the HR establishment. Only for DD11-39 a full-length cDNA sequence was obtained and the corresponding protein encoded for a type-HC RING-finger/putative E3 ligase protein which we termed NtRING1. The expression of NtRING1 was upregulated upon HR induction by elicitin, Ralstonia solanacearum, or tobacco mosaic virus (TMV) in tobacco. Silencing of NtRING1 remarkably delayed the establishment of elicitin-induced HR in tobacco as well as the expression of different early induction genes in tissues undergoing HR. Accordingly, transient overexpression of NtRING1 accelerated the HR launching upon elicitin treatment. Taking together, our data suggests that NtRING1 plays a functional role in the early establishment of HR.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号