首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Background

Moths of genus Dendrolimus (Lepidoptera: Lasiocampidae) are among the major pests of coniferous forests worldwide. Taxonomy and nomenclature of this genus are not entirely established, and there are many species with a controversial taxonomic position. We present a comparative evolutionary analysis of the most economically important Dendrolimus species in Eurasia.

Results

Our analysis was based on the nucleotide sequences of COI and COII mitochondrial genes and ITS2 spacer of nuclear ribosomal genes. All known sequences were extracted from GenBank. Additional 112 new sequences were identified for 28 specimens of D. sibiricus, D. pini, and D. superans from five regions of Siberia and the Russian Far East to be able to compare the disparate data from all previous studies. In total, 528 sequences were used in phylogenetic analysis. Two clusters of closely related species in Dendrolimus were found. The first cluster includes D. pini, D. sibiricus, and D. superans; and the second, D. spectabilis, D. punctatus, and D. tabulaeformis. Species D. houi and D. kikuchii appear to be the most basal in the genus.

Conclusion

Genetic difference among the second cluster species is very low in contrast to the first cluster species. Phylogenetic position D. tabulaeformis as a subspecies was supported. It was found that D. sibiricus recently separated from D. superans. Integration of D. sibiricus mitochondrial DNA sequences and the spread of this species to the west of Eurasia have been established as the cause of the unjustified allocation of a new species: D. kilmez. Our study further clarifies taxonomic problems in the genus and gives more complete information on the genetic structure of D. pini, D. sibiricus, and D. superans.
  相似文献   

2.

Introduction

Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated P CO2 (0.2 kPa CO2) at different levels of physiological organisation.

Results

For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated P CO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher P CO2 was compensated for by intracellular bicarbonate accumulation.

Conclusion

The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and P CO2.
  相似文献   

3.

Background

Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.

Results

Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and HSD17B13 were verified by quantitative real competitive PCR.

Conclusion

A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.
  相似文献   

4.
We investigated whether maternal over-nutrition during pregnancy and lactation affects the offspring’s lipid metabolism at weaning by assessing liver lipid metabolic gene expressions and analysing its mechanisms on the development of metabolic abnormalities. Female Sprague–Dawley rats were fed with standard chow diet (CON) or high-fat diet (HFD) for 8 weeks, and then continued feeding during gestation and lactation. The offspring whose dams were fed with HFD had a lower birth weight but an increased body weight with impaired glucose tolerance, higher serum cholesterol, and hepatic steatosis at weaning. Microarray analyses showed that there were 120 genes differently expressed between the two groups. We further verified the results by qRT-PCR. Significant increase of the lipogenesis (Me1, Scd1) gene expression was found in HFD (P<0.05), and up-regulated expression of genes (PPAR-α, Cpt1α, Ehhadh) involved in β-oxidation was also observed (P<0.05), but the Acsl3 gene was down-regulated (P<0.05). Maternal over-nutrition could not only primarily induce lipogenesis, but also promote lipolysis through an oxidation pathway as compensation, eventually leading to an increased body weight, impaired glucose tolerance, elevated serum cholesterol and hepatic steatosis at weaning. This finding may provide some evidence for a healthy maternal diet in order to reduce the risk of metabolic diseases in the early life of the offspring.  相似文献   

5.
6.

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.
  相似文献   

7.

Introduction

A severe form of Parkinson’s disease (PD) is the Kufor-Rakeb syndrome. Here mutations in the ATP13A2 (PARK9) gene lead to an early juvenile-onset Parkinsonism often accompanied by dementia. ATP13A2 encodes a lysosomal P-type ATPase. Its ortholog in Caenorhabditis elegans is the catp-6 gene where phenotypes with mutations in the alleles ok3473 and tm3190 show high mortality and low reproduction.

Objectives

Since PD is difficult to study in humans we wanted to investigate the potential to use C. elegans as model for the Kufor-Rakeb syndrome. As it is difficult to obtain enough catp-6 mutant worms for standard NMR metabolic profiling, we explored focused ultrasonication extraction and miniaturized NMR as techniques to overcome this limitation.

Methods

One- and two-dimensional NMR experiments (1 H, JRES, TOCSY) were performed with a commercial high-resolution magic angle spinning (HR-MAS) probe (25 µL sample volume). Significant features were identified through analysis of variance (ANOVA, p?<?0.05), volcano plots (p?<?0.05, fold change?>1.5), PCA, and PLS-DA.

Results

Assignment of statistically relevant peaks resulted in the identification of twenty altered metabolites. Previous studies on catp-6 mutants identified strong morphological and functional changes in their mitochondria. Our findings of altered TCA metabolites (fumarate, succinate), branched-chain amino acids (leucine, isoleucine and valine) and nucleotides (AMP, ATP and GTP), formate and hypoxanthine appear to support these findings. Highest fold changes (< ?5) in wildtype relative to both catp-6 strains were found for GTP. Formic acid is known to inhibit the mitochondrial respiratory chain complex IV and high hypoxanthine in catp-6 indicates an increased nucleotide salvage pathway. Alterations in most of the remaining metabolites may be the result of the recently discovered activation of AMPK (AMP-activated protein kinase) and inhibition of mTOR (mechanistic target of rapamycin) pathways together with a catabolic response to recover energy production.

Conclusions

If the effect of the catp-6 mutation in C. elegans at the level of metabolites is correlated to the metabolic dysfunction in the human PARK9 ortholog, then it may be possible to uncover the molecular mechanism behind Parkinsonism and the Kufor-Rakeb syndrome.
  相似文献   

8.

Background

Platelet-derived growth factor receptor α (PDGFRα) expression is increased in activated hepatic stellate cells (HSCs) in cirrhotic liver, while normal hepatocytes express PDGFRα at a negligible level. However, cancerous hepatocytes may show upregulation of PDGFRα, and hepatocellular carcinoma is preceded by chronic liver injury. The role of PDGFRα in non-cancerous hepatocytes and liver fibrosis is unclear. We hypothesized that upon liver injury, PDGFRα in insulted hepatocytes contributes to liver fibrosis by facilitating intercellular crosstalk between hepatocytes and HSCs.

Methods

Hepatocytes were isolated from normal and thioacetamide (TAA)-induced cirrhotic livers for assessment of PDGFRα expression. Conditional knock-out (KO) C57BL/6 mice, in which PDGFRα was selectively deleted in hepatocytes, were generated. Liver fibrosis was induced by injecting TAA for 8?weeks. Hep3B cells were transfected with a small interfering RNA (siRNA) (PDGFRα or control) and co-cultured with LX2 cells.

Results

PDGFRα expression was increased in hepatocytes from fibrotic livers compared to normal livers. Conditional PDGFRα KO mice had attenuated TAA-induced liver fibrosis with decreased HSC activation and proliferation. Immunoblot analyses revealed decreased expression of phospho-p44/42 MAPK in TAA-treated KO mice; these mice also showed almost complete suppression of the upregulation of mouse double minute 2. Although KO mice exhibited increased expression of transforming growth factor (TGF)-β and Smad2/3, this was compensated for by increased expression of inhibitory Smad7. LX2 cells co-cultured with PDGFRα siRNA-infected Hep3B cells showed decreased PDGFRα, α smooth muscle actin, collagen α1(I), TGFβ, and Smad2/3 expression. LX2/PDGFRα-deleted hepatocyte co-culture medium showed decreased PDGF-BB and PDGF-CC levels.

Conclusions

Deletion of PDGFRα in hepatocytes attenuated the upregulation of PDGFRα in HSCs after TAA treatment, resulting in decreased liver fibrosis and HSC activation. This suggests that in the event of chronic liver injury, PDGFRα in hepatocytes plays an important role in liver fibrosis by affecting PDGFRα expression in HSCs.
  相似文献   

9.

Objectives

To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method.

Results

The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11.

Conclusions

Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.
  相似文献   

10.
11.

Objective

To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber.

Results

E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis.

Conclusions

Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.
  相似文献   

12.

Background

In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure.

Results

The knotted onions (knon) gene encodes an unconventionally large testis-specific paralog of ATP synthase subunit d and is required for internal structure of the Nebenkern as well as its subsequent disassembly and elongation. Knon localizes to spermatid mitochondria and, when exogenously expressed in flight muscle, alters the ratio of ATP synthase complex dimers to monomers. By RNAi knockdown we uncovered mitochondrial shaping roles for other testis-expressed ATP synthase subunits.

Conclusions

We demonstrate the first known instance of a tissue-specific ATP synthase subunit affecting tissue-specific mitochondrial morphogenesis. Since ATP synthase dimerization is known to affect the degree of inner mitochondrial membrane curvature in other systems, the effect of Knon and other testis-specific paralogs of ATP synthase subunits may be to mediate differential membrane curvature within the Nebenkern.
  相似文献   

13.

Objectives

To investigate the roles of adhS, which encodes the AdhS subunit of membrane-bound alcohol dehydrogenase (mADH) in Gluconobacter oxydans DSM2003, and to rationally improve mADH activity.

Results

adhS was identified and overexpressed in G. oxydans DSM2003. Its overexpression promoted the AdhA subunit which serves as the primary dehydrogenase transfer from the periplasmic space to the periplasmic surface of the membrane thereby increasing the amount of active mADH and thus enhancing mADH activity up to 1.96-fold. The increased mADH activity significantly altered product selectivity (glyceric acid/dihydroxyacetone) during glycerol oxidation and increased the glyceric acid production by 7.6-fold. By comparison, overexpression of adhS and adhABS was equally effective in increasing the mADH activity and glyceric acid production.

Conclusions

adhS overexpression effectively improved mADH activity, indicating that for mADH, adhS might be a limiting component. The findings provide a guide for the efficient application of Gluconobacter spp. in hydroxy acid production.
  相似文献   

14.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

15.
In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.  相似文献   

16.

Background

Metabolic syndrome is a risk factor for type 2 diabetes and cardiovascular disease. We identified common genetic variants that alter the risk for metabolic syndrome in the Korean population. To isolate these variants, we conducted a multiple-genotype and multiple-phenotype genome-wide association analysis using the family-based quasi-likelihood score (MFQLS) test. For this analysis, we used 7211 and 2838 genotyped study subjects for discovery and replication, respectively. We also performed a multiple-genotype and multiple-phenotype analysis of a gene-based single-nucleotide polymorphism (SNP) set.

Results

We found an association between metabolic syndrome and an intronic SNP pair, rs7107152 and rs1242229, in SIDT2 gene at 11q23.3. Both SNPs correlate with the expression of SIDT2 and TAGLN, whose products promote insulin secretion and lipid metabolism, respectively. This SNP pair showed statistical significance at the replication stage.

Conclusions

Our findings provide insight into an underlying mechanism that contributes to metabolic syndrome.
  相似文献   

17.

Background

Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons.

Results

We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production.

Conclusion

We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.
  相似文献   

18.
19.

Objective

To construct a promoter probe vector, pBE-bgaB, to screen strong promoters from Bacillus amyloliquefaciens.

Results

266 colonies containing active promoter elements from the genomic DNA of B. amyloliquefaciens were identified. Among these, promoter P41 exhibited the strongest β-Gal activity in Escherichia coli and B. amyloliquefaciens. Sequence analysis showed that promoter P41 contained P ykuN , a ykuN gene encoding flavodoxin. Optimization of the ribosome-binding site from P41 to P382 improved β-Gal activity by ~ 200%.

Conclusion

A new strong promoter for protein expression and genetic engineering of Bacillus species.
  相似文献   

20.

Background

Inflammatory bowel diseases (IBD), which include ulcerative colitis and Crohn’s disease, cause chronic inflammation of the digestive tract in approximately 1.6 million Americans. A signature of IBD is dysbiosis of the gut microbiota marked by a significant reduction of obligate anaerobes and a sharp increase in facultative anaerobes. Numerous experimental studies have shown that IBD is strongly correlated with a decrease of Faecalibacterium prausnitzii and an increase of Escherichia coli. One hypothesis is that chronic inflammation induces increased oxygen levels in the gut, which in turn causes an imbalance between obligate and facultative anaerobes.

Results

To computationally investigate the oxygen hypothesis, we developed a multispecies biofilm model based on genome-scale metabolic reconstructions of F. prausnitzii, E. coli and the common gut anaerobe Bacteroides thetaiotaomicron. Application of low bulk oxygen concentrations at the biofilm boundary reproduced experimentally observed behavior characterized by a sharp decrease of F. prausnitzii and a large increase of E. coli, demonstrating that dysbiosis consistent with IBD disease progression could be qualitatively predicted solely based on metabolic differences between the species. A diet with balanced carbohydrate and protein content was predicted to represent a metabolic “sweet spot” that increased the oxygen range over which F. prausnitzii could remain competitive and IBD could be sublimated. Host-microbiota feedback incorporated via a simple linear feedback between the average F. prausnitzii concentration and the bulk oxygen concentration did not substantially change the range of oxygen concentrations where dysbiosis was predicted, but the transition from normal species abundances to severe dysbiosis was much more dramatic and occurred over a much longer timescale. Similar predictions were obtained with sustained antibiotic treatment replacing a sustained oxygen perturbation, demonstrating how IBD might progress over several years with few noticeable effects and then suddenly produce severe disease symptoms.

Conclusions

The multispecies biofilm metabolic model predicted that oxygen concentrations of ~1 micromolar within the gut could cause microbiota dysbiosis consistent with those observed experimentally for inflammatory bowel diseases. Our model predictions could be tested directly through the development of an appropriate in vitro system of the three species community and testing of microbiota-host interactions in gnotobiotic mice.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号