首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many primates, sweet taste is palatable and is an indicator that the food contains carbohydrates, such as sugars and starches, as energy sources. However, we have found that Asian colobine monkeys (lutungs and langurs) have low sensitivity to various natural sugars. Sweet tastes are recognized when compounds bind to the sweet taste receptor TAS1R2/TAS1R3 in the oral cavity; accordingly, we conducted a functional assay using a heterologous expression system to evaluate the responses of Javan lutung (Trachypithecus auratus) TAS1R2/TAS1R3 to various natural sugars. We found that Javan lutung TAS1R2/TAS1R3 did not respond to natural sugars such as sucrose and maltose. We also conducted a behavioral experiment using the silvery lutung (Trachypithecus cristatus) and Hanuman langur (Semnopithecus entellus) by measuring the consumption of sugar-flavored jellies. Consistent with the functional assay results for TAS1R2/TAS1R3, these Asian colobine monkeys showed no preference for sucrose or maltose jellies. These results demonstrate that sweet taste sensitivity to natural sugars is low in Asian colobine monkeys, and this may be related to the specific feeding habits of colobine monkeys.  相似文献   

2.
The taste receptor type 1 (TAS1R) family of heterotrimeric G protein-coupled receptors participates in monitoring energy and nutrient status. TAS1R member 3 (TAS1R3) is a bi-functional protein that recognizes amino acids such as L-glycine and L-glutamate or sweet molecules such as sucrose and fructose when dimerized with TAS1R member 1 (TAS1R1) or TAS1R member 2 (TAS1R2), respectively. It was recently reported that deletion of TAS1R3 expression in Tas1R3 mutant mice leads to increased cortical bone mass but the underlying cellular mechanism leading to this phenotype remains unclear. Here, we independently corroborate the increased thickness of cortical bone in femurs of 20-week-old male Tas1R3 mutant mice and confirm that Tas1R3 is expressed in the bone environment. Tas1R3 is expressed in undifferentiated bone marrow stromal cells (BMSCs) in vitro and its expression is maintained during BMP2-induced osteogenic differentiation. However, levels of the bone formation marker procollagen type I N-terminal propeptide (PINP) are unchanged in the serum of 20-week-old Tas1R3 mutant mice as compared to controls. In contrast, levels of the bone resorption marker collagen type I C-telopeptide are reduced greater than 60% in Tas1R3 mutant mice. Consistent with this, Tas1R3 and its putative signaling partner Tas1R2 are expressed in primary osteoclasts and their expression levels positively correlate with differentiation status. Collectively, these findings suggest that high bone mass in Tas1R3 mutant mice is due to uncoupled bone remodeling with reduced osteoclast function and provide rationale for future experiments examining the cell-type-dependent role for TAS1R family members in nutrient sensing in postnatal bone remodeling.  相似文献   

3.

Key message

TAS atasiRNA-producing region swapping used one-step, high efficiency, and high fidelity directional TC-cloning. Uniform silencing was achieved without lethality using miRNA trigger- TAS overexpression fusion cassettes to generate 21-nt atasiRNA.

Abstract

Plant transgenic technologies are very important for basic plant research and biotechnology. Artificial trans-acting small interfering RNA (atasiRNA) represents an attractive platform with certain advantages over other silencing approaches, such as hairpin RNA, artificial microRNA (amiRNA), and virus-induced gene silencing (VIGS). In this study, we developed two types of constructs for atasiRNA-mediated gene silencing in plants. To functionally validate our constructs, we chose TAS1a as a test model. Type 1 constructs had miR173-precursor sequence fused with TAS1a locus driven by single promoter–terminator cassette, which simplified the expression cassette and resulted in uniform gene silencing. Type 2 constructs contained two separate cassettes for miR173 and TAS1a co-expression. The constructs in each type were further improved by deploying the XcmI-based TC-cloning system for highly efficient directional cloning of short DNA fragments encoding atasiRNAs into TAS1a locus. The effectiveness of the constructs was demonstrated by cloning an atasiRNA DNA into the TC site of engineered TAS1a and silencing of CHLORINA 42 (CH42) gene in Arabidopsis. Our results show that the directional TC-cloning of the atasiRNA DNA into the engineered TAS1a is highly efficient and the miR173–TAS1a fusion system provides an attractive alternative to achieve moderate but more uniform gene silencing without lethality, as compared to conventional two separate cassettes for miR173 and TAS locus co-expression system. The design principles described here should be applicable to other TAS loci such as TAS1b, TAS1c, TAS2, or TAS3, and cloning of amiRNA into amiRNA stem-loop.
  相似文献   

4.
Inter- and intra-species differences in consumption of sweet tastants formed during the evolution of vertebrates are thought to be due to polymorphism of the Tas1r3 gene encoding T1R3, a sweet taste receptor subunit. The aim of the study was to assess the effect of Tas1r3 polymorphism on nutritional behavior of laboratory mice using the first filial generation (F1) hybrids produced by crossing inbred strains with different sensitivity to sweet: 129P3/J males (129, carriers of a recessive SacD sweet taste receptor allele) and C57BL/6 females (B6, dominant SacB allele) or females of the Tas1r3 gene knockout strain, C57BL/6-Tas1r3KO (B6-Tas1r3KO). SacD/B and SacD/0 hybrids, sharing identical background genotypes, differed only by sets of Sac alleles. In a briefaccess test (BAT) or a 48-h two-bottle free choice test, the presence of the dominant SacD allele in SacD/B hybrids determined increased preference for low sucrose concentrations (1–4%) and higher concentrations of nonmetabolized sweeteners (saccharin Na, sucralose, acesulfame K). A comparison between the 129 parental strain and SacD/0 hybrids or between the B6 parental strain and hybrids from crossing B6 × B6-Tas1r3KO revealed no influence of hemizygosity of SacD or SacB on preference for sweeteners in BAT. A small decrease in sucrose and saccharin preference associated with the lack of the SacB allele was observed during long-term exposure to solutions with low concentrations of these substances. The data obtained indicate the relevance of studying the Tas1r3 polymorphism effects on preference and consumption of sweet tastants using F1 interstrain hybrids and BAT.  相似文献   

5.

Key message

Eight R2R3 - MYB genes in tartary buckwheat were identified, and their expression patterns were comprehensively analyzed, which reveals role in plant response to abiotic stresses.

Abstract

The proteins of the R2R3-MYB superfamily play key roles in the growth and development processes as well as defense responses in plants. However, their characteristics and functions have not been fully investigated in tartary buckwheat (Fagopyrum tataricum), a strongly abiotic resistant coarse cereal. In this article, eight tartary buckwheat R2R3-MYB genes were isolated with full-length cDNA and DNA sequences. Phylogenetic analysis of the members of the R2R3-MYB superfamily between Arabidopsis and tartary buckwheat revealed that the assumed functions of the eight tartary buckwheat R2R3-MYB proteins are divided into five Arabidopsis functional subgroups that are involved in abiotic stress. Expression analysis during abiotic stress and exogenous phytohormone treatments identified that the eight R2R3-MYB genes responded to one or more treatments. This study is the first comprehensive analysis of the R2R3-MYB gene family in tartary buckwheat under abiotic stress.
  相似文献   

6.
7.
Cryptochromes are blue/UV-A light receptors that mediate various aspects of plant growth and development. Here, we report the function and signal mechanism of cryptochrome 1b (SbCRY1b) from sweet sorghum [Sorghum bicolor (L.) Moench], a typical short-day cereal plant, to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1b mRNA enrichment showed almost 24-h diurnal rhythms in both short-day (SD) and long-day (LD) conditions. Overexpression of SbCRY1b rescued the late-flowering and the long hypocotyl phenotypes of cry1cry2 double mutant in the transgenic Arabidopsis. SbCRY1b mediated Arabidopsis FT mRNA expression in LD and HY5 protein accumulation in response to blue light. SbCRY1b protein was located in both the nucleus and cytoplasm and was degraded by 26S proteasomes in response to blue light. SbCRY1b interacted, respectively, with Arabidopsis suppressor of PHYA-1051 (AtSPA1), E3 ubiquitin ligase constitutive photomorphogenesis 1 (AtCOP1), and a putative COP1 from sweet sorghum (SbCOP1) instead of SbSPA1 in vitro in a blue light-dependent manner. The observations imply SbCRY1b functions as a major regulator of photoperiodic flowering and its function is more similar to that of Arabidopsis CRY2. Moreover, SbCRY1b-overexpressed transgenic Arabidopsis showed oversensitivity to abscisic acid (ABA) during seed germination and root development. The expression of abscisic acid-insensitive 4 (ABI4), ABI5, abscisic acid responsive element-binding 1 (ABF1), (sucrose non-fermenting 1)-related protein kinase (SnRK2.3), RD29A, and EM6 was upregulated in the transgenic Arabidopsis. The results demonstrated that SbCRY1b may integrate blue light and ABA signals to regulate plant development.  相似文献   

8.
Hypoxia seriously affects the innate immune system of fish. However, the roles of suppressor of cytokine signaling (SOCS), pivotal anti-inflammatory genes, in response to hypoxia/reoxygenation remain largely unexplored. The primary objective of this study was to elucidate the function of SOCS genes under acute hypoxia and reoxygenation in pufferfish (Takifugu fasciatus). In the present study, SOCS1, 2 and 3 were identified in T. fasciatus referred to as TfSOCS1, 2 and 3. Then, qRT-PCR and western blot analysis were employed to assess their expressions at both the mRNA and protein levels. Tissue distribution demonstrated that the three SOCS genes were predominantly distributed in gill, brain and liver. Under hypoxia challenge (1.63?±?0.2 mg/L DO for 2, 4, 6 and 8 h), the expressions of TfSOCS1 and 3 in brain and liver at the mRNA and protein levels were significantly decreased, while their expressions showed an opposite trend in gill. Different from the expressions of TfSOCS1 and 3, the expression of TfSOCS2 was inhibited in gill, along with its increased expression in brain and liver. After normoxic recovery (7.0?±?0.3 mg/L of DO for 4 and 12 h), most of TfSOCS genes were significantly altered at R4 (reoxygenation for 4 h) and returned to the normal level at R12 (reoxygenation for 12 h). SOCS genes played vital roles in response to hypoxia/reoxygenation challenge. Our findings greatly strengthened the relation between innate immune and hypoxia stress in T. fasciatus.  相似文献   

9.
10.
11.
12.

Objectives

To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method.

Results

The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11.

Conclusions

Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.
  相似文献   

13.

Objectives

To investigate gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8, a potential high-ethanol producer, in response to various stresses during high-temperature ethanol fermentation using sweet sorghum juice (SSJ) under optimal conditions.

Results

The maximal ethanol concentration obtained by S. cerevisiae KKU-VN8 using SSJ at 40 °C was 66.6 g/l, with a productivity of 1.39 g/l/h and a theoretical ethanol yield of 81%. Quantitative RT-PCR assays were performed to investigate the gene expression profiles of S. cerevisiae KKU-VN8. Differential expression of genes encoding heat-shock proteins (HSP82, HSP104, SSA4), genes involved in trehalose metabolism (TPS1, TPS2, NTH1) and genes involved the glycolytic pathway (ADH1, ADH2, CDC19) at various time points during fermentation was observed. The expression levels of HSP82, HSP104, SSA4, ADH1 and CDC19 were significantly higher than those of the controls (10.2-, 4-, 8-, 8.9- and 5.9-fold higher, respectively). In contrast, the expression levels of TPS1, TPS2, NTH1 and ADH2 were approx. 2-fold less than those of the controls.

Conclusions

The highly expressed genes encoding heat-shock proteins, HSP82 and SSA4, potentially play an important role in helping S. cerevisiae KKU-VN8 cope with various stresses that occur during high-temperature fermentation, leading to higher ethanol production efficiency.
  相似文献   

14.

Background

A common SCN5A polymorphism H558R (c.1673 A?>?G, rs1805124) improves sodium channel activity in mutated channels and known to be a genetic modifier of Brugada syndrome patients (BrS). We investigated clinical manifestations and underlying mechanisms of H558R in BrS.

Methods and results

We genotyped H558R in 100 BrS (mean age 45?±?14 years; 91 men) and 1875 controls (mean age 54?±?18 years; 1546 men). We compared clinical parameters in BrS with and without H558R (H558R+ vs. H558R- group, N?=?9 vs. 91). We also obtained right atrial sections from 30 patients during aortic aneurysm operations and compared SCN5A expression and methylation with or without H558R. H558R was less frequent in BrS than controls (9.0% vs. 19.2%, P?=?0.028). The VF occurrence ratio was significantly lower (0% vs. 29.7%, P?=?0.03) and spontaneous type 1 ECG was less observed in H558R+ than H558R- group (33.3% vs. 74.7%, P?=?0.01). The SCN5A expression level was significantly higher and the methylation rate was significantly lower in sections with H558R (N?=?10) than those without (0.98?±?0.14 vs. 0.83?±?0.19, P?=?0.04; 0.7?±?0.2% vs. 1.6?±?0.1%, P?=?0.004, respectively). In BrS with heterozygous H558R, the A allele mRNA expression was 1.38 fold higher than G allele expression.

Conclusion

The SCN5A polymorphism H558R may be a modifier that protects against VF occurrence in BrS. The H558R decreased the SCN5A promoter methylation and increased the expression level in cardiac tissue. An allelic expression imbalance in BrS with a heterozygous H558R may also contribute to the protective effects in heterozygous mutations.
  相似文献   

15.
16.

Key message

Shuhui498 (R498) is an elite parent of heavy panicle hybrid rice by pyramiding the rare gn1a and null gs3 alleles. This finding reveals the genetic basis and great potential application in future breeding of R498.

Abstract

The heavy panicle trait, defined as 5 g or more of grain weight per panicle, is one of the target traits in super-high-yield rice breeding programs. The use of heavy panicle-type hybrid rice has been shown to be a successful strategy for super-high-yield breeding programs, particularly under the environmental conditions of high humidity and deficient solar radiation in southwestern China. However, the genetic components of the heavy panicle trait in hybrid rice remain elusive. Here, we report that the combination of loss-of-function mutations in Grain number 1a (Gn1a) and Grain Size 3 (GS3) is responsible for the heavy panicle phenotype of the elite hybrid rice restorer line Shuhui498 (R498). The null gn1a allele is the determinant factor for heavy panicles through increased grain number, while gs3 is associated with grain size and weight. R498 pyramided the two major null alleles, resulting in heavy panicles with a high grain number and large grains. Clustering analysis revealed that the null gn1aR498 allele is a rare haplotype which has been innovatively utilized in R498, underscoring the great potential of R498 for breeding purposes. Our research thus sheds light on the distinct genetic compositions of heavy panicle-type rice and may potentially facilitate super-high-yield rice breeding.
  相似文献   

17.

Objectives

To establish a recombinase flippase (FLP) and flippase recognition target (FRT) system-mediated protocol for post-integration excision of exogenous DNA fragments in the oleaginous yeast Rhodosporidium toruloides.

Results

Binary vectors were constructed to harbor FLP expressing cassette together with the hygromycin-resistance marker. Results showed that R. toruloides transformants produced FLP, but failed to mediate removal of the bleomycin-resistance marker within two FRT sites. When FLP was fused with a native nuclear localization signal (NLS) peptide, the system was found functional. Moreover, R. toruloides recombinant strains expressing the NLS-fused FLP under the control of PADH2, an promoter of alcohol dehydrogenase 2 gene (RHTO_03062), were obtained to realize homologous recombination upon growing in glucose-deficient medium.

Conclusions

We have devised a homologous recombination method for R. toruloides based on the FLP/FRT system, which may facilitate further metabolic engineering and designing advanced cell factories for value-added chemicals.
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号