首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrastructure of CV-1 cells infected with subacute sclerosing panencephalitis (SSPE) viruses was compared with that of CV-1 cells infected with the wild or Edmonston strain of measles virus. Both SSPE viruses and the measles viruses produced two types of nucleocapsid structures: smooth filaments, 15 to 17 nm in diameter, and granular filaments, 22 to 25 nm. The smooth and granular filaments produced by SSPE and measles virus did not differ in appearance. In CV-1 cells infected with SSPE viruses, smooth filaments formed large intranuclear inclusions and granular filaments occupied a large area of the cytoplasm, but always spared the area under the cell membrane. Particles budding from the surface of these cells contained no nucleocapsids. In CV-1 cells infected with measles virus, only small aggregates of smooth filaments were seen in the nuclei. Granular filaments in the cytoplasm predominantly occupied the area under the cell membrane, and were aligned beneath the cell membrane in a parallel fashion and assembled into budding particles. These differences between SSPE and measles virus may be regarded as quantitative, but they do distinguish SSPE viruses from measles virus. Moreover, the formation of large nuclear inclusions filled with smooth filaments appears to be a characteristic process of SSPE, but not of measles, since this type of inclusion is invariably seen in SSPE brain tissues, brain cultures derived from them, and CV-1 cells infected with SSPE viruses.  相似文献   

2.
A postembedding method is described to localize antigens specific for various paramyxoviruses in sections of cells and tissues that have been fixed and embedded in epoxy resins for conventional electron microscopy. Viral antigens were localized in CV-1 cell cultures infected with simian virus 5 (SV5), brains of suckling hamsters inoculated with either neuroadapted mumps virus or hamster-adapted measles virus, and brains of adult mice infected with Sendai (parainfluenza I) virus. Both 1-micrometer-thick and thin (gold) tissue sections were etched with alcoholic sodium hydroxide-solution and then treated following either the unlabeled antibody peroxidase-antiperoxidase or the biotinylated protein A:avidin peroxidase procedure. Primary reagents included immunoglobulin isolated from hyperimmune rabbit sera with specificity to the major viral components of SV5 or SV5 hemagglutinin-neuraminidase, to whole mumps virus or mumps virus nucleocapsids, and to whole Sendai virus. Crude rabbit anti-Sendai virus antiserum and whole human subacute sclerosing panencephalitis (SSPE) sera were used in parallel. The results indicate that tissues processed for conventional evaluation by electron microscopy may be suitable, within limits, for postembedding immunocytochemical staining of paramyxovirus antigens.  相似文献   

3.
A highly sensitive procedure of solid-phase radioimmunoassay (RIA) was developed for the detection of measles IgG antibody. HeLa cells persistently infected with measles virus were used as a solid-phase antigen. This technique was applied to the detection of measles IgG antibody in patients with subacute sclerosing panencephalitis (SSPE) and multiple sclerosis. Normal subjects having experienced natural measles or measles vaccination and patients with various neurological diseases of non-virus nature were also examined as control groups. Measles antibody was detected at high titers in both the sera and cerebrospinal fluid of SSPE patients. Moreover, RIA/HI ratios of SSPE patients were significantly higher than those of normal subjects, suggesting the presence in the formers of antibodies to nucleocapsids at high titers as well as to viral envelopes. On the other hand, no significant difference was found in both RIA and HI titers between the sera of multiple sclerosis and those of various neurological diseases.  相似文献   

4.
Human prostate cells chronically infected with the Mantooth strain of subacute sclerosing panencephalitis (SSPE) virus multiply normally, fuse only occasionally to form giant cells, and yet have twisted intracytoplasmic nucleocapsids. These cells are able to support replication of vesicular stomatitis virus, although they release only small amounts of SSPE virus. To determine why carrier cells do not produce virus, they were examined with techniques for surface replication, freeze-fracturing, and immunoperoxidase labeling with SSPE antibody. The surface of carrier cells, like that of productive cells, is characterized by ridges crowned with viral antigens and devoid of the intramembrane particles revealed by freeze-fracture techniques. Since surface ridges form where nucleocapsids attach to the membrane, the shape and length of ridges are indicative of the shape and length of the underlying nucleocapsid. Whereas ridges on productive cells are serpentine in shape, those on carrier cells are typically straight or hairpin shaped, and the hairpin ridges are twice as long as serpentine ridges on productive cells. Furthermore, the spacing between ridges on carrier cells is never as small as that in productive infections, so that continuous sheets of viral membrane are never formed. The majority of carrier cells lack the round viral buds observed in productive cells but have, instead, many elongated processes attached to the cell surface. Each of these processes contains one or two hairpin ridges overlying hairpin-shaped nucleocapsids. These "hairpin buds" are restricted to a single region of the carrier cell surface, whereas viral buds are distributed over the entire surface of productive cells. Thus, there are several structural defects in carrier cells that depend on the specific interaction of a certain viral strain with a certain cell type. These defects prevent the deployment of viral antigen in some regions of the cell surface, the formation of nucleocapsids of normal length, the coiling of attached nucleocapsids, and the consolidation of sheets of viral membrane into spherical buds with the nucleocapsids coiled inside. These defects may account for the failure of carrier cells to shed infectious virus.  相似文献   

5.
Young adult male ferrets were inoculated intracerebrally (i.c.) with a cell-associated encephalitogenic subacute sclerosing panencephalitis (SSPE) virus strain to study the pathogenesis of the disease at the ultrastructural level. Most became acutely ill in 8-13 days. Areas of the brain were examined with indirect immunoperoxidase labeling techniques to detect measles antigen. None of these animals showed the characteristic viral nucleocapsids or marked inflammatory response associated with SSPE. However, all had positive immunolabeling of unstructured virus antigen, especially in post-synaptic regions in all areas of the brain that were examined. One ferret, immunized with measles vaccine 40 days prior to challenge with SSPE, became ill 18 days post inoculation (p.i.). Perivascular cuffings of inflammatory cells and large cytoplasmic inclusions of fuzzy nucleocapsids were found in the brain and spinal cord. The study indicates that ferrets which become acutely ill after inoculation with cell-associated SSPE virus do so before there is a marked cellular immune response or formation of virus nucleocapsids.  相似文献   

6.
Polyclonal antibody to measles virus can have profound effects on external (outer plasma membrane) as well as internal (cytoplasmic) viral polypeptides expressed in infected cells. The process, termed "antibody-induced antigenic modulation," was further investigated by using monoclonal antibody to several viral polypeptides. Four monoclonal antibodies against the viral hemagglutinin had the ability to decrease the expression of the phosphoprotein, fusion, and membrane protein. A monoclonal antibody to the nucleocapsid protein did not cause these changes. The observed decreases were not due to preferential degradation of viral polypeptides as determined by pulse-chase experiments. Our results indicate that a specific signal to an epitope on the plasma membrane (monoclonal antibody measles virus hemagglutinin) can alter the expression of measles virus phosphoprotein and membrane protein, both polypeptides present in the cytoplasm of infected cells.  相似文献   

7.
Vero cells productively infected with the Halle strain of measles virus have been studied by means of surface replication, freeze-fracturing, and surface labeling with horseradish peroxidase-measles antibody conjugate in order to examine changes in the structure of the cell membrane during viral maturation. Early in infection, the surfaces of infected cells are embossed by scattered groups of twisted strands, and diffuse patches of label for viral antigens cover regions marked by these strands. At later stages, when numerous nucleocapsids become aligned under the plasmalemmal strands, the strands increase in number and width and become more convoluted. At this stage, label for viral antigens on the surface of the cell membrane is organized into stripes lying on the crests of strands. Finally, regions of the membrane displaying twisted strands protrude to form ridges or bulges, and the freeze-fractured membrane surrounding these protrusions is characterized by an abundance of particles small than those found on the rest of the cell membrane. The fractured membranes of viral buds are continuous sheets of these small particles, and the spacing between both nucleocapsids and stripes of surface antigen in buds is less than in the surrounding cell membrane. Detached virus is covered with a continuous layer of viral antigen, has unusually large but no small particles on its membrane surfaces exposed by freeze-fracturing, and no longer has nucleocapsids aligned under its surface. Thus, surface antigens, membrane particles, and nucleocapsids attached to the cell membrane are mobile within the plane of the membrane during viral maturation. All three move simutaneously in preparation for viral budding.  相似文献   

8.
Vero cells infected with measles virus fuse to form multinucleated cells which incorporated virus-specific antigens in their membrane. The distribution of these antigens was analyzed after a brief treatment with human anti-measles immunoglobulin G, using autoradiography and immunoperoxidase labeling combined with transmission and scanning electron microscopy. Virs-specific antigens were distributed over the entire surface of giant cells treated at 4 degrees C with human anti-measles immunoglobulin G and labeled Protein A. When cells were shifted to 37 degrees C, labeled antigen-antibody complexes were redistributed in two stages. Patch formation occurred in 5 to 15 min. Later, antigen-antibody complexes became concentrated in a paracentral "ring" rather than typical caps. Patch formation occurred in the presence of metabolic inhibitors, whereas ring formation was inhibited by metabolic inhibitors. These rings contained membrane folds, villi, and viral buds, whereas the rest of the membrane was smooth. In addition, shedding, endocytosis of antigen-antibody complexes, and reexpression of antigens were observed. Antibodies to nonviral membrane antigens induced the same pattern of redistribution. Infected cells treated with anti-measles Fab' fragments maintained a homogenous distribution of label throughout the experiments. In conclusion, intact immunoglobulins, but not Fab' fragments, were able to induce a dramatic redistribution of viral antigen on the membrane of giant cells infected with measles virus.  相似文献   

9.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

10.
Measles virus protein synthesis has been analyzed in acutely and persistently infected cells. To assess the role of measles in subacute sclerosing panencephalitis (SSPE), measles viral proteins synthesized in vivo or in vitro were tested for reactivity with serum from a guinea pig(s) immunized with measles virus and sera from patients with SSPE. Guinea pig antimeasles virus serum immunoprecipitates the viral polypeptides of 78,000 molecular weight (glycosylated [G]), 70,000 molecular weight (phosphorylated [P]), 60,000 molecular weight (nucleocapsid [N]), and 35,000 molecular weight (matrix [M]) from cells acutely infected with measles virus as well as from chronically infected cells, but in the latter case, immunoprecipitated M protein has a reduced electrophoretic migration. Sera of SSPE patients immunoprecipitated all but the G protein in acutely infected cells and only the P and N proteins from chronically infected cells. In immunoprecipitates of viral polypeptides synthesized in a reticulocyte cell-free translation system, in response to mRNA from acutely or persistently infected cells, the 78,000-molecular-weight form of the G protein was not detected among the cell-free products of either mRNA. Guinea pig antimeasles virus serum immunoprecipitated P, N, and M polypeptides from the products of either form of mRNA, whereas SSPE serum immunoprecipitated the P and N polypeptides but not the M polypeptide. The differences in immunoreactivity of the antimeasles virus antiserum and the SSPE serum are discussed in terms of possible modifications of measles virus proteins in SSPE.  相似文献   

11.
Human lymphoid cells (NC-37) persistently infected with either measles virus (Schwarz and TYCSA strains) or subacute sclerosing panencephalitis (SSPE) virus (Halle and Mantooth strains) were destroyed in the presence of complement by anti-measles sera as well as by sera from SSPE patients. The cytotoxic activity was demonstrated in both IgG and IgM fractions of measles convalescent sera, but only in IgG fraction of SSPE sera. Measles convalescent sera completely lost the cytotoxic activity to all the cell lines, when absorbed with any one of the cell lines, indicating that the viral surface antigens of these cell lines infected with measles or SSPE virus are identical. On the other hand, the cytotoxic activity of SSPE sera could not be readily absorbed with these cells. Thus, the affinity of SSPE sera for the viral surface antigens might be lower than that of measles convalescent sera.  相似文献   

12.
Reduced Fab' fragments of viral antibody hybridized with reduced Fab' fragments of antiferritin immunoglobulin G bind to viral antigenic sites in the plasma membrane of L cells infected with vesicular stomatitis virus. The hybrid antibody reacts specifically with ferritin, which can be identified by electron microscopy, and with fluorescein-conjugated apoferritin, which can be identified by fluorescence microscopy.  相似文献   

13.
The elevation of culture temperatures of C6 cells that were persistently infected with the Lec strain of the subacute sclerosing panencephalitis (SSPE) virus (C6/SSPE) resulted in immediate selective inhibition of membrane (M) protein synthesis. This phenomenon was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cytoplasmic lysates and immunoprecipitation with monoclonal antibody against the M protein in short-time labeling experiments. The synthesis of various viral mRNAs in the presence of actinomycin D decreased gradually at similar rates after a shift to 39 degrees C. No specific disappearance of the mRNA coding for the M protein was observed when viral RNAs isolated from the infected cells were compared before and after a shift up by Northern blot analysis. Results of pulse-chase experiments did not show any significant difference in M protein stability between 35 and 39 degrees C. This rapid block of M protein synthesis was observed not only in Vero cells that were lytically infected with plaque-purified clones from the Lec strain, clones isolated from C6/SSPE cells and the standard Edmonston strain of measles virus but also in CV1, MA160, and HeLa cells that were lytically infected with the Edmonston strain. Poly(A)+ RNAs that were extracted from C6/SSPE cells before and after a shift to 39 degrees C produced detectable phospho, nucleocapsid, and M proteins in cell-free translation systems at 32 degrees C. Even higher incubation temperatures did not demonstrate the selective depression of M protein synthesis described above in vitro. All these data indicate that M protein synthesis of measles virus is selectively suppressed at elevated temperatures because of an inability of the translation apparatus to interact with the M protein-encoded mRNA.  相似文献   

14.
D Spehner  A Kirn    R Drillien 《Journal of virology》1991,65(11):6296-6300
A vaccinia virus recombinant containing the measles virus nucleoprotein gene was shown to induce the synthesis of a 60 kDa phosphorylated nucleoprotein similar to authentic measles virus nucleoprotein. Mammalian or avian cells infected with the recombinant virus displayed tubular structures reminiscent of viral nucleocapsids both in the cytoplasm and in the nucleus. Such structures could be labelled in situ by using an immunogold detection method specific for measles virus proteins. Electron microscopic examination of tubular structures purified from cells infected with the vaccinia virus recombinant indicated that they displayed most of the features of measles virus nucleocapsids, although their length was on the average shorter. These results demonstrate the spontaneous assembly of measles virus nucleocapsids in the absence of viral leader RNA and provide a means for a detailed molecular analysis of the requirements for nucleocapsid assembly. Furthermore, these findings raise the possibility of achieving complete assembly of measles virus particles, devoid of infectious RNA, by using a vaccinia virus vector.  相似文献   

15.
Immune precipitation was used to study the humoral immune response of patients with subacute sclerosing panencephalitis (SSPE). Patients with SSPE have a progressive infection of the CNS by measles or a measles variant despite high serum antibody levels to measles virus as measured by standard serologic techniques. However, when the antibody response to individual measles virus proteins was measured, we found a striking reduction in the ability of sera from patients with SSPE to precipitate the matrix (M) protein as compared to the precipitation of the M protein by sera from normal adults who had natural measles infection in childhood, or by convalescent sera obtained 3 to 5 weeks after a naturally occurring measles infection. The decreased antibody response to the M protein in sera from patients with SSPE occurred despite a vigorous antibody response to the other viral proteins, suggesting a selective defect in the production of antibody to a single viral protein. The reduced anti-M antibody in sera from patients with SSPE was demonstrated whether immune precipitation was performed with wild-type measles virus or SSPE virus proteins. These results suggest that in SSPE only small amounts of the M protein are produced. This result may help explain how measles virus persists in the central nervous system of patients with SSPE.  相似文献   

16.
17.
Cytoplasmic extracts of Vero cells infected with wild-strain Edmonston measles virus were found to contain two and probably three distinct species of nucleocapsids. Species sedimenting at 200 and 110S contained RNA which sedimented at 50 and 16 to 18S, respectively. The third nucleocapsid species which sedimented at 170S was not present in all experiments and was not characterized in detail. Essentially all 200 and 170S, as well as a portion of the 110S, nucleocapsids were membrane associated and probably present in part in cell-associated virions. Five of six plaque purified strains derived from wild-type Edmonston virus produced only 200S nucleocapsids. One of these five plaque-purified strains subsequently produced both 200 and 110S nucleocapsids after being passaged by using undiluted inocula. These results suggest that measles virus may produce distinct classes of defective virus containing short nucleocapsids and subgenomic viral RNA.  相似文献   

18.
Antibodies specific for measles virus could redistribute ("cap") virus antigens on infected HeLa cells as shown by transmission and scanning electron microscopy. Using an indirect immunoperoxidase technique, infected cells showed diffuse, circumferential distribution of virus antigens over the cell surface when mixed with antibody at 4 C. At 37 C, virus-coated microvilli concentrated on one pole of the cell, leaving the remainder of the plasma membrane devoid of both viral antigens and microvillus projections. Whereas extreme polar displacement of virus-antibody complexes frequently occurred, endocytosis was rarely seen. The findings indicate that antiviral antibodies can move and cluster virus on plasma membranes and suggest that virus-antibody complexes are stripped and shed from the cell surface.  相似文献   

19.
Clinical, epidemiological and laboratory findings of four patients with subacute sclerosing panencephalitis (SSPE), diagnosed in Croatia in 2002, were examined. Patient age at disease onset ranged from 5-11 years. All patients were vaccinated regularly with MMR-vaccine. Two patients had a history of measles infection at the age of six and seven months, respectively. In the other two patients, the disease started immediately after the varicella infection. Complement fixing antibody titre to the measles virus (MV) ranged from 1:1024 to 1:65536 in serum, and from 1:16 to 1:128 in cerebrospinal fluid (CSF). In CSF, no antibodies to varicella-zoster virus were found. Brain tissue samples were obtained at autopsy from two patients. In one patient, electron microscopy demonstrated intranuclear viral inclusions (MV nucleocapsids). MV antigen was detected in brain imprints using IFA in both of them. Viral RNA was found in brain tissue samples only, while plasma, serum and CSF were negative. Nucleotide sequence analysis showed that the viruses detected in brain tissue belong to the wild-type MV D6 genotype.  相似文献   

20.
The penetration of bovine kidney cells by infectious bovine rhinotracheitis virus, a member of the herpesvirus group, was investigated using the direct immunoferritin labeling technique. Electron microscopic examination of infected cells after 10 min at 37°C revealed fusion between viral envelope and cell membrane; the former reacted with the ferritin particles conjugated with antiviral antibody. However, shortly after penetration of the nucleocapsid, viral-specific antigenic sites on the plasma membrane were not detected by the immunoferritin technique. Antigenically reactive structures in a disorganized array were frequently detected extracellularly, situated above the penetration sites as indicated by the internalized nucleocapsids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号