首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arctic sea ice is inhabited by several amphipod species. Abundance, biomass and small-scale distribution of these cryopelagic (=ice associated) amphipods were investigated near Franz Josef Land in summer 1994. The mean abundance of all species was 420 ind./m2; the mean biomass was 10.61 g ww/m2. Gammarus wilkitzkii was the dominant species, whereas Apherusa glacialis, Onisimus nanseni and O. glacialis were only scarcely found. Amphipods were concentrated at the edges of ice floes and were less frequent in areas further away under the ice. The relationship between the distribution and ecological/physiological requirements of cryopelagic amphipods, as well as the small-scale morphology of Arctic sea ice, are discussed. Received: 14 January 1998 / Accepted 14 April 1998  相似文献   

2.
Zooplankton composition and distribution were investigated on the Laptev Sea shelf, over the continental slope and in the adjacent deep Nansen Basin during the joint German-Russian expedition “Arctic 93” with RV Polarstern and Ivan Kireyev in August/September 1993. In the shelf area biomass decreased from west to east with the lowest values in the area influenced by the Lena river runoff. A gradual increase of biomass from the shallow to the deep area correlated with water depth. Total biomass ranged between 0.1 and 1.5 g m−2 on the shelf and 4.7 and 7.9 g m−2 in the adjacent Nansen Basin. On the shelf Calanus glacialis/finmarchicus dominated overall. The contribution of brackish-water taxa was low in the west, where high salinity and southward currents from the Arctic Basin supported a marine neritic community, but on the southern and eastern Laptev shelf, in the areas of freshwater influence, brackish-water taxa contributed up to 27% of the total biomass. On the slope and in deep areas a few large Arctic copepod species, Calanus glacialis, C. hyperboreus and Metridia longa, composed the bulk of biomass and determined the pattern of its vertical distribution. The export of Calanus species from the Nansen Basin onto the Laptev shelf appears to be of great importance for the shelf communities. In turn, the eastern outer shelf and slope area of the Laptev Sea are thought to have a pronounced effect on the deep basin, modifying the populations entering the central Arctic. Received: 25 March 1997 / Accepted: 18 July 1997  相似文献   

3.
The amphipod species Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and O. glacialis live permanently associated with the Arctic sea ice. Qualitative and semi-quantitative investigations of gut contents and faeces showed that all four species use detritus as the main food source. Detrital lumps from the underside of sea ice had the same item composition as amphipod gut contents and faeces. Crustacean remains and ice algae were additional food items, but overall they were quantitatively less important. All species are omnivorous; however, differences in gut contents, behavioural observations and functional–morphological studies of the mandibles suggest a differentiation within this feeding strategy. G. wilkitzkii is a detritivorous-carnivorous-necrophagous-suspension-feeding species and shows the most complex feeding strategy. O. nanseni and O. glacialis are predominantly detritivorous-necrophagous, whereas A. glacialis is characterised as a more herbivorous-detritivorous species. By using a variety of the available food sources under Arctic sea ice, the amphipods are well adapted to the under-ice habitat and are less influenced by temporal and spatial variations. Furthermore, the wide food spectrum of all four species reduces the intra- and interspecific competition in a habitat where certain food sources are limited or only seasonally available. Accepted: 30 June 2000  相似文献   

4.
Currently, the impact of declining seasonal sea ice extent in the Arctic on polar food webs remains uncertain. Previously, a range of proxy techniques has been employed to determine links between sea ice or phytoplankton primary production and the Arctic marine food web, although it is accepted that such approaches have their limitations. Here, we propose a novel approach to tracing sea ice primary production through Arctic food webs using the sea ice diatom biomarker, IP25. Various benthic macrofaunal specimens were collected between March and May 2008 from Franklin Bay in the Amundsen Gulf, Arctic Canada, as part of the International Polar Year–Circumpolar Flaw Lead system study. Each specimen was analysed for the presence of the sea ice diatom biomarker IP25 in order to provide evidence for feeding by benthic organisms on sea ice algae. IP25 was found in nineteen out of the twenty-one specimens analysed, often as the most abundant of the highly branched isoprenoid biomarkers detected. The stable isotope composition of IP2513C = −17.1 ± 0.5‰) in the sea urchin (Strongylocentrotus sp.) specimens was similar to that reported previously for this biomarker in Arctic sea ice, sedimenting particles and sediments. It is concluded that detection of IP25 in Arctic benthic macrofauna represents a novel approach to providing convincing evidence for feeding on sea ice algae. It is also proposed that analysis of IP25 may be used to trace trophic transfer of sea ice algal-derived organic matter through Arctic food webs in the future.  相似文献   

5.
Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: “lemming foxes” and “coastal foxes”. Crashes in lemming abundance can result in pulses of “lemming fox” movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the “coastal fox” population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy–Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring “lemming fox” populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.  相似文献   

6.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

7.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

8.
Landlocked Arctic charr (Salvelinus alpinus) populations in sub-Arctic and Arctic Greenland lakes were sampled with multi-mesh-sized survey gillnets. The study covered a range of small shallow lakes (0.01 km2, maximum depth <3.3 m) to large deep lakes (43 km2, maximum depth >200 m). Arctic charr were found in one to three different forms in lakes with maximum depths >3 m. A dwarf form occurred in all lakes inhabited by Arctic charr and was the only form in lakes with maximum depths <8 m. In deeper lakes with maximum depths >20 m and a surface area <0.5 km2, larger charr were found, although in low numbers, the length-frequency distribution being unimodal with a tail towards large sizes. In lakes with a maximum depth >20 m, large-sized charr were more abundant, and the length-frequency distribution of the population was bimodal, with a first mode around 10–12 cm and a second mode around 26–37 cm. In a single large and deep lake, a distinct medium-sized pelagic zooplankton-eating charr form occurred. Maximum size of individual charr was significantly positively correlated with lake maximum depth and volume, and the mean size of large-sized charr was significantly positively correlated with lake volume. Our study indicates that the charr population structure became more complex with increasing lake size. Moreover, the population structure seemed to be influenced by lake-water transparency and the presence or absence of three-spined stickleback (Gasterosteus aculeatus). Accepted: 31 January 2000  相似文献   

9.
R. Gradinger 《Polar Biology》1999,22(3):169-177
The abundance and biomass of sympagic meiofauna were studied during three cruises to the Antarctic and one summer expedition to the central Arctic Ocean. Ice samples were collected by ice coring and algal pigment concentrations and meiofauna abundances were determined for entire cores. Median meiofauna abundances for the expeditions ranged from 4.4 to 139.5 × 103 organisms m−2 in Antarctic sea ice and accounted for 40.6 × 103 organisms m−2 in Arctic multi-year sea ice. While most taxa (ciliates, foraminifers, turbellarians, crustaceans) were common in both Arctic and Antarctic sea ice, nematodes and rotifers occurred only in the Arctic. Based on the calculated biomass, the potential meiofauna ingestion rates were determined by applying an allometric model. For both hemispheres, daily and yearly potential ingestion rates were below the production values of the ice algal communities, pointing towards non-limited feeding conditions for ice meiofauna year-round. Accepted: 29 March 1999  相似文献   

10.
Export of autochthonously produced particulate organic carbon (POC) is a globally important mechanism for sequestering carbon in the deep sea. The role of microbial hydrolytic activity in attenuating POC flux is generally understudied, and particularly complex on Arctic continental shelves influenced by other sources of POC. To evaluate this role, we used fluorogenic substrate analogs to measure extracellular enzyme activity (EEA) associated with particle size fractions considered suspended (1–70 μm) and sinking (>70 μm). Samples were collected by in situ filtration at depths of 25–100 m at ten stations (156–1,142 m deep) in the Amundsen Gulf and Beaufort Sea in June–July, 2008, during the Circumpolar Flaw Lead project. Significant positive correlations observed between EEA and both chlorophyll a and δ13CPOC suggest that EEA is elevated in waters dominated by marine-derived POC. No difference in bulk EEA was observed between size fractions, but POC- and cell-specific EEA was significantly elevated on sinking aggregates. Calculations show that 2–44% of carbon retention in surface waters could be attributed to mobilization by enzymes associated with sinking aggregates, and up to 57% if enzymes associated with suspended particles are included. Model results suggest that microbial attenuation of POC below the euphotic zone is a quantitatively important mechanism for carbon loss, especially when particles are sinking slowly. The role of microbes in attenuating POC flux on Arctic shelves appears to have been underestimated previously and may become increasingly important if climate warming brings increased marine productivity.  相似文献   

11.
A collection of fossils sampled during the 1898–1902 expedition of theFram to the Canadian Arctic Islands includes abundant bryozoans from the Lower Permian (Artinskian) Great Bear Cape Formation of Ellesmere Island. From this material a new genus with one new species —Nansenopora peculiaris n. gen., n. sp. — as well as three new species —Streblotrypella arctica n. sp.,Phragmophera patricki n. sp. andKallodictyon spinatum n. sp. — are described. Furthermore, the speciesUlrichotrypa ramulosa Bassler, 1929 is reported for the first time from the Lower Permian of the Arctic region.  相似文献   

12.
The conduction properties of peripheral nerves from the Arctic fish species Arctic eelpouts (Lycodes sp.), snake blenny (Lumpenus lampretaeformis) and polar cod (Boreogadus saida), permanently adapted to low temperatures, were studied. Nerves of these fishes have two types of fibres, characterised by extracellular compound action potentials with fast (7 m/s) and slow (4 m/s) conduction velocities, as measured at 12 °C. The temperature dependence of the conduction velocity was bimodal, changing its slope at about 16 °C. The Q 10 above 16 °C was 1.12–1.49, while below 16 °C it was 1.82–2.16. Irreversible deterioration of the nerve was observed at temperatures around 19–27 °C. A comparison with data previously obtained from Mediterranean fishes indicates that Arctic fishes have similar temperature sensitivity of nerve conduction and a slight vertical displacement on the conduction velocity-temperature curves, which is insufficient to compensate the decrease of the conduction velocity at their physiological temperature, the conduction velocity of Arctic fishes being about one-half of that of temperate fishes. This suggests that this neurophysiological function is not fully cold-adapted in these Arctic fish species. Accepted: 3 June 2000  相似文献   

13.
Arctic Sea ice biota: design and evaluation of a mesocosm experiment   总被引:1,自引:0,他引:1  
A mesocosm experiment (enclosure volume 220 l) was designed such that sea ice inhabited by Arctic Sea ice organisms was formed and maintained under natural conditions at 66°N in Rovaniemi, Finland. The experiment was run from natural freezing in December 1994 to melting in April 1995. The ice was inhabited by diatoms, chlorophyceae, heterotrophic flagellates, ciliates, nematodes and turbellarians. Biomass in the ice, expressed as Chlorophyll a concentration, was 20–110 μg l−1; total cell densities varied from 5 × 106 to 35 × 106 cells l−1. Amongst phototrophic organisms, a succession from a flagellate-dominated community (Chlamydomonas sp.) to a multi-species diatom-dominated community was observed. Typical Arctic species such as Nitzschia frigida and Melosira arctica were present in the ice. Bacterial concentration varied between 2 × 108 and 7 × 108 cells l−1. At least two trophic levels were present in the ice. Received: 3 April 1997 / Accepted: 9 September 1997  相似文献   

14.
Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.  相似文献   

15.
Mesozooplankton collected during five summer expeditions to the Arctic Ocean between 1987 and 1991 was analysed for regional patterns in biomass and species distribution, distinguishing between an epipelagic (0–100 m) and a deeper (0–500 m) layer. A total of 58 stations was sampled mainly in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean and in areas of the Greenland Sea, West Spitsbergen Current and Barents Sea. Results from the different expeditions were combined to create a transect extending from the Fram Strait across the Eurasian Basin into the Makarov Basin. Mesozooplankton dry mass in the upper 500 m decreased from 8.4 g m−2 in the West Spitsbergen Current to less than 2 g m−2 in the high-Arctic deep-sea basins. In the central Arctic Ocean, biomass was concentrated in the upper 100 m and was dominated by the large copepods Calanus hyperboreus and C. glacialis. In contrast, the mesozooplankton in the West Spitsbergen Current was more evenly distributed throughout the upper 500 m, with C. finmarchicus as the prevailing species. The distribution of abundant mesopelagic species reflected the hydrographic regime: the calanoid copepod Gaetanus tenuispinus and the hyperiid amphipod Themisto abyssorum were most abundant in the Atlantic inflow, while Scaphocalanus magnus was a typical component of the high-Arctic fauna. The relatively high mesozooplankton biomass and the occurrence of boreal-Atlantic species in the central Arctic Ocean are indicators for the import of organic material from allochthonous sources, especially from the northern North Atlantic. Hence, in spite of its enclosure by land masses, the Arctic Ocean is characterized by an exchange of water masses and organisms with the North Atlantic, and advection processes strongly influence the distribution of plankton species in this high-latitude ecosystem. Received: 18 December 1997 / Accepted: 11 April 1998  相似文献   

16.
The biomass and productivity of sea ice algae was assessed in the northwestern Barents Sea in May 2004. Sea ice algal pigment content was patchy with a mean of 18.5 ± 8.9 mg Chla m−2. The algal community was dominated by the diatom Nitzschia frigida. Primary production measured by 14C incubations was between 0.37 and 2.8 mg C m−2 h−1, which compared well with oxygen-based methods using the diffusive boundary layer approach (0.071–1.1 mg C m−2 h−1). Given the differences in the irradiances under which these two sets of measurements were made, there was a strong level of consistency between the two sets of results. Measurements of primary production were consistent with previous Arctic measurements but high spatial heterogeneity made a regional estimate of production inappropriate.  相似文献   

17.
The Arctogadus glacialis is endemic to the Arctic Ocean and its apparently disjunct circumpolar distribution range from the Siberian coast through the Chukchi Sea and the Canadian Arctic to the shelf off NE Greenland. Records of A. glacialis are scarce in the European Arctic and here we present all available and reliable records of the species in the area. Altogether, 296 specimens of A. glacialis are reported from 53 positions in the European Arctic during the period 1976–2008. The specimens were registered off Iceland and the Jan Mayen Island, northwest and northeast of Svalbard, northeast in the Barents Sea, and south and east off Franz Josef Land. The additional records show that A. glacialis display a circumpolar and more continuous distribution than described before. In the European Arctic, A. glacialis has been caught at 155–741 m depth with the highest abundance at 300–400 m. We therefore suggest that A. glacialis is more associated to the continental shelves surrounding the Arctic Ocean than previously thought. The length–weight relation of A. glacialis is similar across the European Arctic.  相似文献   

18.
Phytoplankton pigment signatures from a cruise in 2005 are herein presented and used as a chemotaxonomic tool for phytoplankton diversity in the Svalbard marine archipelago. Studies from these waters have until recently reported only a few groups of phytoplankton, and while this paper is the first to show that the diversity around Svalbard includes all major phytoplankton pigment groups, the results are seen in relation to other similar studies from the Arctic. We present two potentially important marker pigments: prasinoxanthin, originating from prasinophytes, and gyroxanthin-diester, possibly originating from the temperate- and bloom-forming coccolithophore Emiliania huxleyi. Pigment identification by HPLC revealed a significant amount of Chlorophyll b-containing chlorophyceae, euglenophyceae and prasinophyceae. Prasinoxanthin was present at 50% of the examined stations, typically at Chl a maximum (15–25 m depth), in both Atlantic and Arctic water masses. Gyroxanthin-diester, in contrast to prasinoxanthin, was found only in Atlantic water masses and at low concentrations. Our data may be important for the identification and verification of remotely sensed images of different pigment groups of phytoplankton and their corresponding biomass, typically estimated from Chl a. Remotely sensed presence of coccoliths, indicating E. huxleyi at sea surface, is discussed in relation to water masses and pigment signatures at sea surface and Chl a maximum depths.  相似文献   

19.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

20.
The sea anemone Bathyphellia margaritacea (Danielssen in Actinida. The Norwegian North-Atlantic expedition 1876–1878, Groendahl, Oslo, 1890) was collected by the research submersible MIR at the North Pole at a depth of 4,262 m and by the North Pole Drifting Station NP-22 in the American sector of Arctic Ocean covered by permanent ice. These widely separated records significantly increase the known geographic range of the species. B. margaritacea is highly plastic and has an ability to occupy different types of substrates. It appears to be the only species of sea anemone that is able to range in the high Arctic up to the North Pole and the only reliably identified species known from this part of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号