首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-13 relaxation data are reported for exocyclic groups of hexopyranosyl sugar residues in the repeating unit within the Escherichia coli O91 O-antigen polysaccharide in a dilute D2O solution. The measurements of T 1, T 2 and heteronuclear nuclear Overhauser enhancements were carried out at 310 K at two magnetic fields (16.4 T, 21.1 T). The data were analyzed using the standard and extended Lipari–Szabo models, as well as a conformational jump model. The extended version of the Lipari–Szabo and the two-site jump models were most successful for the hydroxymethyl groups of Gal and GlcNAc sugar residues. Different dynamics was found for the hydroxymethyl groups associated with different configurations (d-gluco, d-galacto) of the sugar residues, the latter being faster than the former.  相似文献   

2.
Structural studies of the Escherichia coli O78 O-antigen polysaccharide   总被引:1,自引:0,他引:1  
The structure of the O-antigen polysaccharide from Escherichia coli O78 has been investigated; methylation analysis, partial solvolysis with liquid hydrogen fluoride, and 2D-n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the following structure.----3)-beta-D-GlcpNAc-(1----4)-beta-D-GlcpNAc- (1----4)-beta-D-Manp-(1----4)-alpha-D-Manp-(1----  相似文献   

3.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

4.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O173 has been investigated. Sugar and methylation analyses, electrospray ionisation mass spectrometry together with 1H, 31P and 13C NMR spectroscopy were the main methods used. The structure of the pentasaccharide repeating unit of the PS was found to be: [formula: see text] By treatment with 48% HF the phosphoric diester linkage was cleaved together with the glycosidic linkage of the fucosyl group, rendering a tetrasaccharide with the structure: alpha-D-Glcp-(1-->2)-beta-D-Glcp-(1-->3)-beta-D-GlcpNAc-(1-->3)-D-Glc.  相似文献   

5.
A Kjellberg  A Weintraub  G Widmalm 《Biochemistry》1999,38(38):12205-12211
The structure of the O-antigenic polysaccharide from the enterohemorrhagic Escherichia coli O91 has been determined using primarily NMR spectroscopy on the (13)C-enriched polysaccharide. The O-antigen is composed of pentasaccharide repeating units with the following structure: -->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->4)-beta-D-GlcpA-6-N- Gly -(1-->3)-beta-D-GlcpNAc-(1-->4)-alpha-D-Quip-3-N-[(R)-3-hydroxy butyra mido]-(1-->. The bacterium was grown with D-[UL-(13)C]glucose in the medium which resulted in an overall degree of labeling of approximately 65% in the sugar residues and approximately 50% in the N-acyl substituents, indicating some metabolic dilution in the latter. The (13)C-enrichment of the polysaccharide proved valuable since NMR assignments could be made on the basis of (13)C, (13)C-connectivity in uniformly labeled residues. The biosynthesis of the (R)-3-hydroxybutyramido substituent via C(2) fragments was identified by NMR spectroscopy. The (R)-configuration at C3 is in accord with fatty acid biosynthesis. Additional cultures with specifically labeled D-[1-(13)C]glucose or D-[6-(13)C]glucose corroborated the direct incorporation of glucose as the building block for the hexose skeletons in the polysaccharide and the biosynthesis of acyl substituents occurring via the triose pool followed by decarboxylation to give acetyl building blocks labeled with (13)C at the methyl group.  相似文献   

6.
AIMS: The aims of the study were to characterize the O91 O-antigen gene cluster from Shiga toxin-producing Escherichia coli (STEC) O91 and to provide the basis for a specific PCR test for rapid detection of E. coli O91. METHODS AND RESULTS: The published primers complementary to JUMPstart and gnd gene, the conserved flanking sequences of O-antigen genes clusters in E. coli and related species were used to amplify the 10-kbp O91 O-antigen biosynthesis locus of STEC O91. A DNA library representative of this cluster allowed two O91 specific probes to be identified, and two specific PCR O91 serotyping tests to be successfully developed. CONCLUSIONS: These results confirm that the O-antigen gene cluster sequences of E. coli allow rapidly a specific O-antigen PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of PCR-assays available to replace the classical O-serotyping among E. coli O-antigen.  相似文献   

7.
8.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

9.
The structure of the O-antigen polysaccharide from Escherichia coli O-149 has been investigated; methylation analysis, partial hydrolysis with acid, and n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of trisaccharide repeating-units having the following structure. (Formula: see text). The absolute configuration at the acetalic carbon atom of the pyruvic acid residue is S.  相似文献   

10.
The repeating pentasaccharide of O-antigen from Escherichia coli O111 contains galactose, glucose, N-acetylglucosamine, and colitose, the latter representing the major antigenic determinant. Phenol extraction of this strain was previously shown to release two fractions (I and II) containing O-antigen carbohydrate, and both fractions were believed to be lipopolysaccharide. We have now characterized fractions I and II and conclude that only fraction II represents lipopolysaccharide. Fraction II contains phosphate, 2-keto-3-deoxyoctonate, beta-hydroxymyristic acid, and potent endotoxin activity, whereas fraction I was deficient in all of these properties of the lipid A and core oligosaccharide regions of lipopolysaccharide. Fractions I and II each represented 50% of the total cellular O-antigen, and both were present on the cell surface. Both fractions were metabolically stable, and no precursor-product relationship existed between them. Fraction II had a number-average molecular weight of 15,800, corresponding to an average of 12 O-antigen repeats per molecule. In contrast, fraction I had a number-average molecular weight of 354,000, corresponding to an average of 404 O-antigen repeats per molecule. Before heat treatment, cells of E. coli O111 are poorly agglutinated by O-serum; although this indicates the presence of a capsule, the corresponding K-antigen was never detected. We conclude that fraction I, when present on the cell surface, inhibits agglutination of unheated cultures of E. coli O111 by O-serum because: (i) a variant strain which lacks fraction I was agglutinated by O-serum without prior heating; (ii) erythrocytes coated with purified fraction I behaved like bacteria containing fraction I in showing inhibition of O-serum agglutination; and (iii) heat treatment released fraction I and rendered bacterial cells agglutinable in O-serum.  相似文献   

11.
The structure of the O-antigen polysaccharide from Escherichia coli O159 has been determined using primarily NMR spectroscopy of the 13C-enriched polysaccharide. The sequence of the sugar residues could be determined by heteronuclear multiple bond connectivity NMR experiments. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [sequence: see text] Matrix assisted laser desorption ionization mass spectrometry was performed on intact lipopolysaccharide and from the resulting molecular mass the O-antigen part was estimated to contain approximately 23 repeating units. Cross-reactivity of this O-antigen to that of Shigella dysenteriae type 4 was confirmed using enzyme-linked immunoabsorbant assay.  相似文献   

12.
The motional properties of the cyclic enterobacterial common antigen (cECA), consisting of four trisaccharide repeat units, have been investigated by carbon-13 spin relaxation. R1, R2 and NOE relaxation parameters have been determined at three magnetic field strengths. The data were interpreted within the model-free framework to include the possibility of motional anisotropy, and overall as well as local dynamical parameters were fitted separately for each ring carbon. The motional anisotropy was addressed by assuming an axially symmetric diffusion tensor, which was fitted from the overall correlation times for each site in the sugar residues using the previously determined crystal structure. The data were found to be in agreement with an oblate shape of the molecule, and the values for Diso and were in good agreement with translational diffusion data and an estimate based on calculation of the moment of inertia tensor, respectively. The local dynamics in cECA were found to be residue-dependent. Somewhat lower values for the order parameters, as well as longer local correlation times, were observed for the -linked ManNAcA residue compared to the two -linked residues in the trisaccharide repeat unit.  相似文献   

13.
Conformational studies have been performed of a pentasaccharide derived from the O-polysaccharide from Escherichia coli O142. The polymer was selectively degraded by anhydrous hydrogen fluoride and reduced to yield an oligosaccharide model of its repeating unit, which in the branching region consists of four aminosugars. A comparison of (1)H and (13)C chemical shifts between the pentasaccharide and the polymer showed only minor differences, except where the cleavage had taken place, indicating that the oligomer is a good model of the repeating unit. Langevin dynamics and molecular dynamics simulations with explicit water molecules were carried out to sample the conformational space of the pentasaccharide. For the glycosidic linkages between the hexopyranoside residues, small but significant changes were observed between the simulation techniques. One-dimensional (1D) (1)H,(1)H double pulsed field gradient spin echo (DPFGSE) transverse rotating-frame Overhauser effect spectroscopy (T-ROESY) experiments were performed, and homonuclear cross-relaxation rates were obtained. Subsequently, a comparison of interproton distances from NMR experiment and the two simulation approaches showed that in all cases the use of explicit water in the simulations resulted in better agreement. Hydrogen-bond analysis of the trajectories from the molecular dynamics simulation revealed interresidue interactions to be important as a cluster of different hydrogen bonds and as a distinct highly populated hydrogen bond. NMR data are consistent with the presence of hydrogen bonding within the model of the repeating unit.  相似文献   

14.
Summary Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping C resonances and for 11 threonine C single resonances. Except for three C relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C–H fragments exhibit fast (e < 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and e along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The -ribbon comprising residues 37 to 47 is spatially restricted, with relatively large e values in its hairpin region. The other -ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain C must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, e and R2ex) or (S infslow sup2 , S inffast sup2 and slow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time e for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1–S2e is nearly independent of e for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.  相似文献   

15.
The enrichment of tRNA at specific sites with carbon-13 has been accomplished in vivo using a mutant of Escherichia coli. A relaxed strain of E. coli auxotrophic for methionine was grown in a specifically defined medium supplemented with either [14C] or [13C]-methyl labeled methionine. Cells were collected at the end of the log-phase of growth and tRNA was extracted. Analysis of the radioactivity of the [14C]-labeled tRNA established an incorporation ratio of three labeled carbons per tRNA molecule. Incorporation of the [14C]-label in vivo was confined to the methylation of nucleotides as determined by thin layer chromatography of nucleotides resulting from a ribonuclease digestion of [14C]-labeled tRNA. The carbon-13 NMR spectrum of [13C]-enriched tRNA indicated a similar degree of incorporation into the methylated nucleotides by the substantial enhancement of [13C]-methyl NMR signals only. Assignment of signals has been made for the methyl groups of ribothymidine and N7-methylguanosine in E. coli tRNA.  相似文献   

16.
A structure of the O-polysaccharide (O-antigen) of Escherichia coli O158 has been reported (Datta, A. K.; Basu, S.; Roy, N. Carbohydr. Res.1999, 322, 219–227). In this work, we reinvestigated the O158 polysaccharide using sugar analyses, Smith degradation, and 1H and 13C NMR spectroscopy and established the following structure, which is at variance with the structure established earlier:This structure is in agreement with the predicted functions of genes found in the O-antigen gene cluster of E. coli O158.  相似文献   

17.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed.  相似文献   

18.
The dynamic and conformational properties of the 2-methylene on the sn-2 chain of dimyristoylphosphatidylcholine have been investigated in small unilamellar vesicles. An analysis of the spin relaxation of a proton-coupled 13C nucleus has been used to provide the additional information necessary to propose a specific geometry for motion. The results suggest a model with three motions in addition to vesicle tumbling: (1) a slow axial rotation of the entire molecule about the bilayer normal (tau congruent to 2 X 10(-8) s); (2) torsional oscillations about C-C bonds on a very fast time scale; and (3) rapid jumps (tau = 6 X 10(-10) s) between two conformers having approximate gauche+ and gauche- conformations about the C2-C3 bond of the sn-2 chain. The proposed conformations are compared to those previously predicted on the basis of crystal structures, spectroscopic data, and energy-minimization calculations.  相似文献   

19.
Information was obtained on rates of overall molecular reorientation and segmental motion of amino acid sidechains of oxytocin in dimethylsulfoxide by determination of spin-lattice relaxation times (T1) at 25 MHz for carbon-13 in natural abundance in the hormone. The T1 values of the α-carbons of amino acid residues located in the 20-membered ring of oxytocin are all about 50 msec. The overall correlation time for the hormone backbone was estimated to be 8.8 × 10?10 sec. The sidechains of Tyr, Ile and Gln undergo segmental motion with respect to the backbone of the ring. The T1 value of the α-carbon of the Leu residue is greater than for any α-carbon in the ring, indicating an increased mobility of the backbone of the C-terminal acyclic peptide as compared to the ring. The β- and γ-carbons of the Pro residue undergo an exo-endo interconversion with regard to the plane formed by α-carbon, δ-carbon and N atom of the Pro pyrollidine ring. These data are discussed in light of results from other experimental and theoretical studies, including carbon-13 spin-lattice relaxation times for oxytocin in aqueous solution.  相似文献   

20.
The O-antigen polysaccharides of Klebsiella serotype O5 and Escherichia coli serotype O8 are serologically very similar or identical. The structures of these two polysaccharides have now been re-investigated. N.m.r. spectroscopy, chromium trioxide oxidation, hydrolysis with a specific phage enzyme, and f.a.b. mass spectrometry were the principal methods used. It is concluded that the O-antigen has the following structure, in which D-Man3Me is 3-O-methyl-D-mannose and n is approximately 10. (Formula: see text) Biosynthetic studies indicate that these antigens are synthesised by addition of D-mannopyranosyl groups to the "non-reducing" end of the mannan chain, and it seems possible that addition of a 3-O-methyl-D-mannopyranosyl group involves termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号