首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-microelectrode technique of voltage clamping sheep cardiac Purkinje fibers was used to examine the changes in contraction which occur during trains of voltage clamps. (A "train" is defined as a series of voltage clamps delivered at a particular rate, beginning after a rest long enough that the effects of previous stimulation have died away.) Contractions showed striking staircases, or progressive changes in peak isometric tension, during trains. Short clamps, clamps to voltages more negative than --20 or --30 mV, or holding potentials less negative than the resting potential favored negative staircases, while long clamps, clamps to positive voltages, and holding potentials near the resting potential each favored positive staircases. The staircase behavior appeared to be due to changes in the initial rate of recovery of the ability to contract. The changes in staircase behavior as a function of clamp voltage suggested that the relationship between peak tension and clamp voltage should depend on the experimental design. When the steady-state contraction was plotted as a function of clamp voltage, voltage-tension relations like those recently reported for working ventricle were obtained, with a threshold between --30 and - -40 mV and a steep relation between tension and voltage. When the first contraction after a rest was plotted, the threshold voltage was more negative, the curve was flatter, and the peak tensions at inside positive voltages were reduced.  相似文献   

2.
Although inactivation of the rapidly activating delayed rectifier current (I(Kr)) limits outward current on depolarization, the role of I(Kr) (and recovery from inactivation) during repolarization is uncertain. To characterize I(Kr) during ventricular repolarization (and compare with the inward rectifier current, I(K1)), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I(Kr) was minimal at plateau potentials but transiently increased during repolarizing ramps. The I(Kr) transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I(Kr) transient terminating the plateau. Although peak I(Kr) transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current (I(K1)) density during repolarization was dispersed, whereas potentials characterizing I(K1) defined a narrower (more negative) voltage range. In summary, rapidly activating I(Kr) provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I(Kr) provides a novel means for modulating the contribution of this current during repolarization.  相似文献   

3.
The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.  相似文献   

4.
Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores.  相似文献   

5.
Voltage clamp hyperpolarization and depolarization result in currents consistent with depletion and accumulation of potassium in the extracellular clefts o cardiac Purkinje fibers exposed to sodium-free solutions. Upon hyperpolarization, an inward current that decreased with time (id) was observed. The time course of tail currents could not be explained by a conductance exhibiting voltage-dependent kinetics. The effect of exposure to cesium, changes in bathing media potassium concentration and osmolarity, and the behavior of membrane potential after hyperpolarizing pulses are all consistent with depletion of potassium upon hyperpolarization. A declining outward current was observed upon depolarization. Increasing the bathing media potassium concentration reduced the magnitude of this current. After voltage clamp depolarizations, membrane potential transiently became more positive. These findings suggest that accumulation of potassium occurs upon depolarization. The results indicate that changes in ionic driving force may be easily and rapidly induced. Consequently, conclusions based on the assumption that driving force remains constant during the course of a voltage step may be in error.  相似文献   

6.
B G Katzung 《Life sciences》1978,23(13):1309-1315
Automaticity is the result of dynamic changes in transmembrane currents during electrical diastole. It is readily demonstrated in most cardiac cell types. In all four cardiac cell types studied by the voltage clamp technique (Purkinje, ventricular, atrial, and sino-atrial node fibers), the major change detected during diastolic depolarization is a decrease in outward current. This decrease in a repolarizing current (largely potassium mediated) permits an inward current (sodium and/or calcium mediated) to depolarize the cell.All four cardiac cell types appear to possesess a time-dependent potassium conductance which controls the decrease in outward current over the ?70 to ?30 mV potential range. Purkinje fibers manifest an additional conductance which is responsible for automaticity in this type of cell at potentials between ?100 and ?70 mV.  相似文献   

7.
Autonomic transmitter actions on cardiac pacemaker tissue: a brief review   总被引:3,自引:0,他引:3  
Application of the voltage clamp technique to cardiac primary pacemaker tissue has yielded sufficiently detailed information that a qualitative model of the pacemaker response can now be formulated. One important difference between the generation of spontaneous activity in sinus tissue, and in the Purkinje fiber, appears to be the involvement of the slow inward current, Isi, in the sinus pacemaker depolarization. The voltage clamp results also demonstrate the importance of the Isi in the chronotropic responses of pacemaker tissue. Epinephrine has been shown to increase Isi in rabbit sinoatrial node, and there is indirect evidence that acetylcholine may reduce Isi in reptilian sinus venosus. Additional, more quantitative data are essential, however, before cardiac primary pacemaker activity and its modulation by the autonomic transmitters can be fully understood.  相似文献   

8.
The effects of caffeine on tension, membrane potential, membrane currents, and intracellular [Ca2+], measured as the light emitted by the Ca2+-activated photoprotein aequorin, were studied in canine cardiac Purkinje fibers. An initial, transient, positive inotropic effect of caffeine was accompanied by a transient increase in the second component of the aequorin signal (L2) but not the first (L1). In the steady state, 4 or 10 mM caffeine always decreased twitch tension and greatly reduced both L1 and L2. At a concentration of 2 mM, caffeine usually reduced but occasionally increased the steady state twitch tension. However, 2 mM caffeine always reduced both L1 and L2. Caffeine eliminated the diastolic oscillations of intracellular [Ca2+] induced by high extracellular [Ca2+]. In voltage-clamp experiments, 10 mM caffeine reduced the transient outward current and the peak tension elicited by step depolarization from a holding potential of -45 mV. In the presence of 20 mM Cs+, 10 mM caffeine reduced slow inward current. However, the time course of this reduction was far slower than that in tension and light observed in separate experiments. The simplest explanation of the results is that caffeine inhibits the sequestration of Ca2+ by the sarcoplasmic reticulum. The results also suggest that in Purkinje fibers caffeine increases the sensitivity of the myofilaments to Ca2+.  相似文献   

9.
The effects of quinidine and lidocaine on frog ventricle were studied by using a single sucrose gap voltage clamp technique. In Ca2+-Ringer, quinidine (80 microM) caused slight prolongation of action potential duration (APD50) and significant inhibition of twitch tension. Lidocaine (40 microM) shortened APD50 without significant effect on twitch tension. In tetrodotoxin (TTX)-treated preparations, quinidine caused significant prolongation of APD50 from 529 +/- 19 msec to 597 +/- 11 msec, (n = 9) and inhibition of twitch tension, but lidocaine did not affect APD50 and twitch tension. Under voltage clamp condition, quinidine reduced peak inward current in the absence of TTX, but enhanced peak inward current in the presence of TTX. The steady state outward current was increased by quinidine. Lidocaine didn't affect peak inward current in the absence or in the presence of TTX. Membrane current through the inward rectifier (IK1) was slightly increased by lidocaine, but significantly inhibited by quinidine. The enhancement of peak inward current by quinidine was retarded or reversed in preparation bathed with Sr2+-Ringer. When Ni2+ was added to a preparation bathed in Ca2+-Ringer, an inhibition of calcium inward current and action potential plateau was observed. The spike amplitude of the action potential was, however, unaffected by Ni2+. In this Ni2+-treated preparation, lidocaine (20 microM) caused significant shortening of APD50 without significant effect on action potential amplitude. The shortening of APD50 was associated with a slight increase of steady state outward current. The increase of steady state outward current by lidocaine was absent in the TTX-treated preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sympathetic stimulation induces weak salivation compared with parasympathetic stimulation. To clarify this phenomenon in salivary glands, we investigated cAMP-induced modulation of Ca(2+)-activated Cl(-) secretion from rat parotid and submandibular acinar cells because fluid secretion from salivary glands depends on the Cl(-) secretion. Carbachol (Cch), a Ca(2+)-increasing agent, induced hyperpolarization of the cells with oscillatory depolarization in the current clamp mode of the gramicidin-perforated patch recording. In the voltage clamp mode at -80 mV, Cch induced a bumetanide-sensitive oscillatory inward current, which was larger in rat submandibular acinar cells than in parotid acinar cells. Forskolin and IBMX, cAMP-increasing agents, did not induce any marked current, but they evoked a small nonoscillatory inward current in the presence of Cch and suppressed the Cch-induced oscillatory inward current in all parotid acinar cells and half (56%) of submandibular acinar cells. In the current clamp mode, forskolin + IBMX evoked a small nonoscillatory depolarization in the presence of Cch and reduced the amplitude of Cch-induced oscillatory depolarization in both acinar cells. The oscillatory inward current estimated at the depolarized membrane potential was suppressed by forskolin + IBMX. These results indicate that cAMP suppresses Ca(2+)-activated oscillatory Cl(-) secretion of parotid and submandibular acinar cells at -80 mV and possibly at the membrane potential during Cch stimulation. The suppression may result in the weak salivation induced by sympathetic stimulation.  相似文献   

11.
In voltage clamp studies of cardiac Purkinje fibers, a large early outward current is consistently observed during depolarizations to voltages more positive than -20 mV. After the outward peak of the current, the total membrane current declines slowly. Dudel et al. (1967. Pfluegers Arch. Eur. J. Physiol. 294:197--212) reduced the extracellular chloride concentration and found that the outward peak and the decline of the current were abolished. They concluded that the total membrane current at these voltages was largely determined by a time- and voltage-dependent change in the membrane chloride conductance. We reinvestigated the chloride sensitivity of this current, taking care to minimize possible sources of error. When the extracellular chloride concentration was reduced to 8.6% of control, the principal effect was a 20% decrease in the peak amplitude of the outward current. This implies that the membrane chloride conductance is not the major determinant of the total current at these voltages. The reversal potential of current tails obtained after a short conditioning depolarization was not changed by alterations in the extracellular chloride or potassium concentrations. We suspect that the tail currents contain both inward and outward components, and that the apparent reversal potential of the net tail current largely reflects the kinetics of the outward component, so that this experiment does not rule out potassium as a possible charge carrier. The possibility that potassium carries much of the early outward current was further investigated using tetraethylammonium, which blocks potassium currents in nerve and skeletal muscle. This drug substantially reduced the early outward current, which suggests that much of the early outward current is carried by potassium ions.  相似文献   

12.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

13.
An improved vaseline gap voltage clamp for skeletal muscle fibers   总被引:39,自引:20,他引:19       下载免费PDF全文
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle fibers are plucked from the semitendinosus muscle and mounted while depolarized by a solution like CsF. After Vaseline seals are formed between fluid pools, the fiber ends are cut once again, the central region is rinsed with Ringer solution, and the feedback amplifiers are turned on. Errors in the potential and current records are assessed by direct measurements with microelectrodes. The passive properties of the preparation are simulated by the "disk" equivalent circuit for the transverse tubular system and the derived parameters are similar to previous measurements with microelectrodes. Action potentials at 5 degrees C are long because of the absence of delayed rectification. Their shape is approximately simulated by solving the disk model with sodium permeability in the surface and tubular membranes. Voltage clamp currents consist primarily of capacity currents and sodium currents. The peak inward sodium current density at 5 degrees C is 3.7 mA/cm2. At 5 degrees C the sodium currents are smoothly graded with increasing depolarization and free of notches suggesting good control of the surface membrane. At higher temperatures a small, late extra inward current appears for small depolarizations that has the properties expected for excitation in the transverse tubular system. Comparison of recorded currents with simulations shows that while the transverse tubular system has regenerative sodium currents, they are too small to make important errors in the total current recorded at the surface under voltage clamp at low temperature. The tubules are definitely not under voltage clamp control.  相似文献   

14.
Membrane current following prolonged periods of rapid stimulation was examined in short (less than 1.5 mm) canine cardiac Purkinje fibers of radius less than 0.15 mm. The Purkinje fibers were repetitively stimulated by delivering trains of depolarizing voltage clamp pulses at rapid frequencies. The slowly decaying outward current following repetitive stimulation ("post-drive" current) is eliminated by the addition of 10(-5) M dihydro-ouabain. The post-drive current is attributed to enhanced Na/K exchange caused by Na loading during the overdrive. Depolarizing voltage clamp pulses initiated from negative (- 80 mV) or depolarized (-50 mV) holding potentials can give rise to post- drive current because of activation of tetrodotoxin-sensitive or D600- sensitive channels. The magnitude of the post-drive current depends on the frequency of voltage clamp pulses, the duration of each pulse, and the duration of the repetitive stimulation. The time constant of decay of the post-drive current depends on extracellular [K] in accordance with Michaelis-Menten kinetics. The Km is 1.2 mM bulk [K], [K]B. The mean time constant in 4 mM [K]B is 83 s. Epinephrine (10(-5) M) decreases the time constant by 20%. The time constant is increased by lowering [Ca]o between 4 and 1 mM. Lowering [Ca]o further, to 0.1 mM, eliminates post-drive current following repetitive stimulation initiated from depolarized potentials. The latter result suggests that slow inward Ca2+ current may increase [Na]i via Na/Ca exchange.  相似文献   

15.
Cardiac Purkinje fibers play an important role in cardiac arrhythmias, but no information is available about ionic currents in human cardiac Purkinje cells (PCs). PCs and midmyocardial ventricular myocytes (VMs) were isolated from explanted human hearts. K(+) currents were evaluated at 37 degrees C with whole cell patch clamp. PCs had clear inward rectifier K(+) current (I(K1)), with a density not significantly different from VMs between -110 and -20 mV. A Cs(+)-sensitive, time-dependent hyperpolarization-activated current was measurable negative to -60 mV. Transient outward current (I(to)) density was smaller, but end pulse sustained current (I(sus)) was larger, in PCs vs. VMs. I(to) recovery was substantially slower in PCs, leading to strong frequency dependence. Unlike VM I(to), which was unaffected by 10 mM tetraethylammonium, Purkinje I(to) was strongly inhibited by tetraethylammonium, and Purkinje I(to) was 10-fold more sensitive to 4-aminopyridine than VM. PC I(sus) was also reduced strongly by 10 mM tetraethylammonium. In conclusion, human PCs demonstrate a prominent I(K1), a time-dependent hyperpolarization-activated current, and an I(to) with pharmacological sensitivity and recovery kinetics different from those in the atrium or ventricle and compatible with a different molecular basis.  相似文献   

16.
当绵羊心浦肯野纤维α-和β-受体分别激动时,用双微电极法电压箝制术研究慢内向离子流Isi和延迟整流外向离子流Ix的变化。心得安阻断β-受体时,苯肾上腺素5.0×10~(-6)mol/L使Isi的峰值由17.5增加到26nA(n=6,P<0.05).并使Isi由失活到完全恢复的时间由293±51ms延长到441±109ms(n=4,P<0.05),但对Ix无明显影响。酚妥拉明阻断α-受体时,异丙肾上腺素4×10~(-7)mol/L使Isi峰值由27.7增加到40.8nA(n=7,P<0.05),对Isi的动力过程无明显影响,却使Ix尾电流的幅值由6.7增加到14,4nA(n=6,P<0.05)。表明α-和β-受体激动剂作用的差异在于对延迟整流离子流的影响不同。  相似文献   

17.
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.  相似文献   

18.
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current.  相似文献   

19.
The pacemaker current in cardiac Purkinje myocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time-dependent current and unmasks another time-dependent current (i(f)) with a more negative (> 20 mV) threshold and no reversal at more negative values; (d) Cs+ blocks both time-dependent currents recorded in the absence and presence of Ba2+. The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K+ current (iKdd) that can be separated from the hyperpolarization- activated inward current i(f).  相似文献   

20.
The properties of the slow inward current, isi, in the sino-atrial (s.a.) node of the rabbit have been investigated using two microelectrodes to apply voltage clamp to small, spontaneously beating, preparations. Many of the experimental results can be closely simulated using the computer model of s.a. node electrical activity (Noble & Noble 1984) which has been developed from models of Purkinje fibre activity (Noble 1962; DiFrancesco & Noble 1984). Comparison of the computed reconstructions with experimental results provides a test of the validity of the modelling. Experiments using paired depolarizing clamp pulses show that inactivation of isi is calcium-entry dependent although, unlike the inactivation of Ca2+ currents in some other systems, it also shows some voltage-dependence. Re-availability (recovery from inactivation) of isi in s.a. node is much slower than inactivation at the same potential, showing that isi is not controlled by a single first order process. This very slow recovery from inactivation of isi in the s.a. node and the slow time course of its activation and inactivation at voltages near threshold (-40 to -50 mV) can be closely modelled by assuming that there are two components of 'total isi': a fast inward current, iCa,f' representing the 'gated' fraction and a second, slower, inward current component, iNaCa which, we propose, is caused by the sodium-calcium exchange that ensues when the initial Ca2+ -entry triggers the release of stored intracellular Ca2+. When repetitive trains of clamp pulses are given, a 'staircase' of isi magnitude is seen which can be increasing ('positive') or decreasing ('negative') according to the potential level and frequency of the pulse train given. When computer reconstructions of such staircases are made, it is found that the positive staircases (which, in contrast to negative staircases, imply that more complex processes than simple inactivation are present) can be closely simulated by a model which incorporates slower processes (suggested Na-Ca exchange current) in the total isi in addition to the gated current component.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号